Agilent 75000 SERIES C

Using Agilent Instrument Basic

with the E1406A Command Module
.

User’s Manual

Agilent Technologies

Copyright © Agilent TechnologiesInc., 1992 - 2006

3. 3.
=]
28
=

Q.
%N
2 8

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent
Technologies further certifies that its calibration measurements are traceable to the United Sates National Institute of Standards and
Technology (formerly National Bureau of Sandards), to theextent all owed by that organization’ scalibration facility, and tothecalibration
facilities of other International Sandards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of one (1) year from date of
shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part
of) other Agilent products. During the warranty period, Agilent Technologies will, a its option, either repair or replace products which
prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay
shipping chargesto Agilent and Agilent shall pay shipping chargesto return the product to Buyer. However, Buyer shall pay all shipping
charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions
when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be
uninterrupted or error free.

Limitation Of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products
or interfacing, unauthorized modification or misuse, operation outside of the environmenta specificationsfor the product, or improper site
preparation or mai ntenance.

The design and implementation of any circuit on this product isthe sole responsibility of the Buyer. Agilent does not warrant the Buyer's
circuitry or mafunctions of Agilent productsthat result from the Buyer’scircuitry. In addition, Agilent does not warrant any damage that
occurs as aresult of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. Agilent SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CON-
TRACT, TORT, ORANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. Agilent Technologies MAKES NO WARRANTY OF
ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESSFOR A PARTICULAR PURPOSE. Agilent shal not beliablefor errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance or use of this materia. This document contains
proprietary information whichisprotected by copyright. All rightsarereserved. No part of thisdocument may be photocopied, reproduced,
or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumesno responsibility for the
use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software” as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), asa"commercial item" asdefinedin FAR 2.101(a), or as"Restricted computer software” asdefined in FAR 52.227-19 (Jun 1987)(or
any equivalent agency regulation or contract clause), whichever is applicable. Y ou have only those rights provided for such Software and
Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.

Agilent C-Size Using IBASIC With the E1406A Command Module
Edition 1 Rev 2

Copyright © 1992-2006 Agilent Technologies, Inc. All Rights Reserved.

Printing History

The Printing History shown below lists all Editions and Updates of this manua and the printing date(s). Thefirst printing of the manual
is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain
replacement pages to correct the current Edition of the manual. Updates are numbered sequentialy starting with Update 1. When anew
Edition iscreated, it contains al the Update information for the previous Edition. Each new Edition or Update a so includes arevised copy
of thisprinting history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and
manual updates.

Edition 1 (Part Number E1406-90070).o oo veee et June 1992
Edition 1 Rev 2 (Part Number E1406-90070) July 2006

Safety Symbols

Instruction manual symbol affixedto product.
Indicates that the user must refer to the man- /\/ Alternating current (AC).
H ua for specific WARNING or CAUTION
hd information to avoid persona injury or dam- -)
age to the product. - - - Direct current (DC).
& Indicates hazardous voltages.
Indicates the field wiring terminal that must
1 be connected to earth ground before operating . .
— the equipment—protects against eectrical Cals attention to a procedure, practice, or con-
shock in case of fault. WARNING dition that could cause bodily injury or death.
))) Cadlls attention to a procedure, practice, or con-
| ol Frame or chassisground terminal—typically CAUTION dition that could possibly cause damage to
connectsto the equipment’s meta frame. muipmmt or permanent loss of data.
WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product.
Failure to comply with these precautions or with specific war nings elsewhere in this manual violates safety standar ds of design,
manufacture, and intended use of theproduct. Agilent Technologiesassumesno liability for thecustomer’sfailure to comply with
these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.
DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from livecircuits: Operating personnel must not remove equipment covers or shields. Procedures involving the remova of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrica shock, DO NOT perform proceduresinvolving cover or shield remova unlessyou
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
saf e operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service
Office for service and repair to ensure that safety features are maintai ned.

DO NOT serviceor adjust alone Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute partsor modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for
service and repair to ensure that saf ety features are maintained.

Agilent 75000 Series C Documentation

Suggested
Sequence for Using
the Manuals

C-Size VXl bus Systems I nstallation and Getting Started Guide. Contains
step-by-step instructions for all aspects of plug-in module and mainframe
installation.

Agilent E1406A Command Module User’s Manual. Contains information on
downloading user tablesto modify (if necessary) configurations set up using the
Installation and Getting Started Guide, information on using an RS-232 terminal as
a"front panel" to your C-size system, and information on how interrupts are used.
A command reference for the Agilent E1406A Command Module command set is
included.

Using Agilent Instrument BASI C with the E1406A Command Module.
Containsinformation on the version of Agilent Instrument Basic which can be
installed in Flash ROM in your Agilent E1406A Command Module.

Plug-1n Module User’'s Manuals. Contain programming and configuration
information for the plug-in modules. These manuals contain examples for the most
commonly-used functions and give acomplete SCPI command reference for the
module.

Installation and Getting

Started Guide
Instrument Applications* Using Command M odule functions
Plug-in Module User’s MainframeUser’s
Manuals Manuals

* For Scanning Voltmeter Applications, refer to the Agilent EL326A/E1411A 5 1/2 Digit Multimeter
User's Manual.

Suggested Sequence for Using the Manuals

Related Documents

Agilent E1401A Mainframe User’s M anual. Contains installation information to
prepare the mainframe for use and shows how to install plug-in manuals. This
manual also contains a detailed hardware description of the mainframe.

Agilent Instrument BASI C User’s Handbook. Includes three books: Agilent
Instrument BASIC Programming Techniques, Agilent Instrument BASIC
Interfacing Techniques, and Agilent Instrument BAS C Language Reference .

Beginner’s Guideto SCPI. Explains the fundamental s of programming
instruments using the Standard Commands for Programmable I nstruments (SCPI)
language. We recommend this guide to anyone who is programming with SCPI for
thefirst time.

Tutorial Description of the General Purpose I nter face Bus. Describes the
technical fundamentals of the General Purpose Interface Bus (GPIB). This
document also includes general information on |EEE 488.2 Common Commands.
We recommend this document to anyone who is programming with |EEE 488.2 for
thefirst time.

| EEE Standard 488.2-1987, | EEE Standard Codes, Formats, Protocols, and
Common Commands. Describes the underlying message formats and data types
used in TMSL and defines Common Commands. Y ou will find this document
useful if you need to know the precise definition of certain message formats, data
types, or Common Commands. Available from: The Institute of Electrical and
Electronic Engineers, Inc.; 345 East 47th Street; New York, NY 10017; U.S.A.

VX1 bus System Specifications. Available from Agilent Technologies.

The VMEbus Specification. Available from: VMEbus Internationa Trade
Association; 10229 N. Scottsdale Road, Suite E; Scottsdale, AZ 85253; U.SA.

About this M anual

Manual Content

Chapter 1: Product
Overview

Chapter 2: Modifying Your

Configuration

Chapter 3: Using the
Display Terminal Interface

Chapter 4: Status and
Interrupts

Chapter 5: Downloading
Device Drivers

Chapter 6: Downloading a
New Operating System

Chapter 7: System
Instrument Command
Reference

Appendix A: Specifications

Appendix B: Error
Messages

Appendix C: Command
Module A16 Address Space

Appendix D: Sending
Binary Data Over RS-232

Thismanual contains information on the use of IBASIC asimplemented in the
Agilent E1405/E1406 Command Modules. The manual is part of amanual set that
includes the C-Size V X1bus Systems "I nstall ation and Getting Started Guide™ and
various plug-in module user’'s manuals.

This chapter contains afunctional, e ectrical, and physical description of the Agilent
E1406A Command Module.

This chapter explains how the Command Modul€e's resource manager function
configures your V X1bus system. It also contains information on using user-tablesto
override the (default) configuration performed by the resource manager.

This chapter shows you how to use an RS-232 terminal to operateinstrumentsin
the Series C mainframe. The terminal is connected to the Command Module viathe
Module's RS-232 port.

This chapter describes the status system structure used by the Command Module
and how interrupts are enabled and serviced.

This chapter contains information on downloading device drivers into non-volatile
memory using both GPIB and RS-232 connections.

This chapter contains information on downloading a new operating system into the
E1406A Command Module flash RAM using both GPIB and RS-232 connections.
It also contains a description of Command Module commands which are active
when you are using the L oader instrument.

The command reference contains a detailed description of Command Module
commands which are active when you are using the System instrument. It includes
information on the choice of settings and examples showing the context in which
the command is used.

This section contains alist of the Agilent E1406A Command Modul€'s operating
specifications.

This section lists the error messages associated with the Command Module and
their possible causes.

This appendix contains an address map of the A16 address space inside the
Command Module. It includes information on how to determine the base address of
a device whose registers are mapped into A16 space.

This Appendix contains information on transferring binary files over an RS-232
interface. It includes information on how these files are coded for transmission.

Vi

Table of Contents

Getting Started
Using ThisChapter e e e e e e 1-1
Selecting IBASIC Modeof Operation i 1-1
Comparing Modesof Operation 1-1
System Controller Mode Operation i 1-2
Tak/ListenModeOperation e 1-4
Setting IBASIC Modeof Operation e 1-6

Creating and Editing Programs

UsingthisChapter 2-1
UsingaTerminal e e 2-2
Sdectingthe IBASIC Instrument 2-2
IBASICDisplay 2-3
UTILSKeYS 2-4
Control Key SeqUences. o o o i e e 2-5
EditMode. 2-6
Entering ProgramLines 2-6
LigingtheProgram e 2-7
InsertingLines 2-8
Deetingand RecallingLines. 2-9
EditinginIBASIC 2-10
AutomaticSyntax Checking 2-10
Upper or Lower CaseLetters? e 2-10
Copying Lines (By ChangingLineNumbers) 2-11
MoreDetailsabout EditMode 2-11
A Closer Look at ListingaProgram 2-12
RenumberingaProgram e 2-13
Deeting MultipleLines e 2-13
Making ProgramsReadable L o 2-13
DeletingaProgram 2-15
Clearing IBASICMEMOry o e 2-15
IBASIC vs. HP Series 200/300 Editing Differences 2-16
Securing Programs e e 2-17

Using RAM Volumes

HowtoUseThisChapter e e 31
RAMYVoOIUMES 31
Voldatilevs. NonvolatileRAM Volumes 31
System Memory Space ASSignments 3-2
CreatingRAM Volume 16 32
Cregting NonvolatileRAM Volumel1, 34
Cregting VolatileRAM Volumes 3-6
CheckingaVolumesFormat, 37
InCaseof Difficulty e 39

Table of Contents 1

M ass Stor age Concepts

HowtoUseThisChapter i i 4-1
FileSystems e 4-1
Volumes, Directories, and Files 4-1
LIFFileStructure. 4-2
DOSFileStructure 4-3
Specifying the Directory, File,andVVolume 4-4
Specifying aDefault Directory/Volume 4-7
Managing Files 4-9
Cregting Directories o o i 4-9
CatdogingFiles e 4-9
Saving Programs 4-10
Re-SavingPrograms e 4-11
GettingPrograms 4-12
CopyingFiles 4-13
CopyinganEntireVolume 4-13
Renaming Files 4-14
Purging Files 4-14
Purging DOSDIrectories oo i e e e 4-14
Autostarting Programs 4-15
IBASICFIeTYPES o o 4-17
ASCILFiles 4-17
BDATHIleS. . . . 4-17
DIRFIlEs 4-17
DOSHP-UX Files 4-17
UsngWildcards e 4-18
Enabling/DisablingWildcards 4-18
FileNameswithExtensions 4-18
IBASIC Commandsthat useWildcards 4-19
Behavior Differences between LIFand DOSFileSystems 4-22
ASCIl and BDAT FilesonDOSDISKS v v v i e i e e e e e 4-22
SAVEonDOSandLIF 4-22
RE-SAVEonDOSandLIF 4-22
COPY toffromDOSandLIF. 4-23
DOSHP-UX FileExtensibility 4-23
InCaseof Difficulty e 4-24

System Controller Mode Operation

Using ThisChapter e 5-1
System Controller Mode Overviewo 51
Contralling Instruments/GPIB Devices o 5-3
Usingthe GPIB/IBASIC Interfaces 54
Communicating with Instruments 5-8
CommunicatingwithGPIBDevices 5-10
Controlling RS-232/422 Peripherals 5-12
Assigningthe RS-232/422 Interface 5-12
Configuringthe RS-232 Interface 5-13
CommunicatingviaRS-232 Interface 5-15
Serial InterffaceExamples L 5-16
Storing/RetrievingData. 521
StepstoStoreData e 5-22

2 Table of Contents

Storing Datato IBASICMemory 5-23

StoringDatatoDisks 5-24
Storing DatatoRAM Volumes 5-26
Enabling Interruptsand Events. 5-28
Interruptsand EventsOverview e 5-28
Enabling Instrument Interrupts 5-30
Enabling GPIB Devicelnterrupts 5-36
Enabling BranchingonEvents 5-39
Servicing Eventsand Interrupts Lo 5-42
Synchronizing Instrument/DeviceOperations 5-47
Contralling Instruments/GPIB Devices 5-47
Synchronizing Instrument/DeviceOperations 5-48
Passing Control to External Computer 5-54

Talk/Listen M ode Operation

Using ThisChapter e e 6-1
Tak/LissenModeOverview 6-1
Usng PROGram Commands. oot i e e e e 6-4
Downloading and Uploading IBASIC Programs 6-4
Contralling/QueryingPrograms 6-8
Contralling Instruments L 6-10
Assigning InstrumentstoInterfaces Lo o oL 6-10
Contralling Instruments with IBASIC Computer 6-11
Contralling Instruments with External Computer 6-11
Controlling RS-232/422 Peripherals 6-12
Storing/RetrievingData 6-12
Enabling Interruptsand Events. 6-13
Synchronizing Instrument/DeviceOperations o . 6-14
Synchronize Instruments Using IBASIC Computer Lo ... 6-14
Synchronize Instruments Using Two Computers 6-14

IBASIC Command Reference

Using ThisChapter e 7-1
IBASIC CommandsNot Supported 7-1
IBASIC Commands - Alphabetical Listing 7-2
IBASIC Commands-by Function 7-6
IBASIC Command Differences 7-10

SCPI Command Reference

Using ThisChapter e e e 8-1
SCPI ConformanceInformation 81
SCPI Command OVEIVIEW o i e e e e 8-4
SCPl Command Format 8-4
SCPICommand TYPES o o e e e e e 8-5
SCPl Command Parameters 8-6
SCPl ResponseDataFormats L 8-7
DIAGnostic SubsystemCommands 8-8
PROGram SubsystemCommands 8-16
SYSTemSubsystemCommands 8-26

Table of Contents 3

Common Command Reference

UsingthisChapter e 9-1
Common Command GroUPS . . .« v v v v e e e e e e e 9-1
Test/ldentity Commands e 9-2
Synchronizationcommands 9-3
Statusand EventCommands 9-3
MacroCommands e e 9-6
IBASIC and HP Series 200/300 Differences
HoatingPointMath A-1
Timeout when Entering DatafromaDevice. A-2
Enter from aDevicewith no Enter Listdoesnot Wait A-2
Format Off Enter to a String Does Not Look for LengthWord A-3
String VariableEntry L A-3
Nested 1/O e A-4
Subprogramsand ON Conditions A-4

4 Table of Contents

Chapter 1 Contents

Using This Chapter 1-1

Selecting IBASIC Mode of Operation 1-1

Comparing Modesof Operation i
System Controller Mode Operation
Tak/LisenMode Operation o

Setting IBASIC Mode of Operation 1-6

Chapter 1

Getting Started

Using This Chapter

This chapter presents the basics of how to get started using IBASIC. Y ou should be
familiar with the operation of your C-Size mainframe, Command Module, and any
instrument modules you will be using. This chapter contains the following sections:

* Choosing IBASIC Mode of Operation. 1-1
o Setting IBASIC Mode of Operation. 1-6

Selecting IBASIC
Mode of Operation

Comparing Modes of
Operation

After you have installed and configured the mainframe, Command Module, and
plug-in module(s) you will need to choose amode of operation for IBASIC.
IBASIC can run in either System Controller mode or Talk/Listen mode. The mode
is set with the Sys Control - Talk/Listen switch on the Command module (bit 7 on
the"GPIB Address" DIP switch).

To help you choose the mode of operation for your application, the following table
compares major functionsfor System Controller and Tak/Listen mode. See System
Controller Mode Operation or Talk/Listen Mode Operation for summaries of these
functions. After you select the mode of operation, see Setting IBAS C Mode of
Operation in this chapter to set the mode of operation.

System Controller vs. Talk/Listen Mode Operations

Function

System Controller Mode Talk/Listen Mode

Create/Edit IBASIC Use RS-232 Termina Same as System Contoller mode
Programs Use Termina Emulator

Use RAM Disks Use DOS and LIF file systems Same as System Controller mode
Use ASCII, BDAT, and DOS/HP-UX files
Store programs/datato RAM volumes

Use External Disks Use DOS and LIF file systems Cannot access disks from
Use ASCII, BDAT, and DOS/HP-UX files IBASIC computer
Store programs/data to external SS80 disk or tape
Control IBASIC computer vialBASIC interface Same as System Controller mode
Interna Instruments Terminal viaUser interface plus can use externa (GPIB)
computer
Control GPIB Devices IBASIC computer viaGPIB interface External computer via (external)
GPIB interface
Control RS-232/422 RS-232 peripherals via built-in RS-232 port Same as System Controller mode
Peripheras RS-232/422 peripherasvia Agilent E1324A modules

Getting Started 1-1

System Controller
Mode Operation

TERMINAL

GPIB

Create/Edit IBAS
Use Mass Storage

C Programs
Devices

Control Instruments/Devices/Peripheras

SYSTEM CONTROLLER MODE (TYPICAL)

USER INTERFACE

C—Size Mainframe

[l INSTRUMENT

SYSTEM

o MODULE L
e INSTRUMENTS |+ Y=
i

=

=

IBASIC &

IBASIC o

INSTRUMENT

IBASIC
COMPUTER

GPIB

)|

DEVICES

SS—380
DISK OR TAPE

GPIB
PORT

INTERFACE

Serial Port Assignments

A= Terminal Input

INTERFACE

SERIAL

E1400-1B FIGT1—1

B= RS-232/422 Peripheral Contro

Figure 1-1. System Controller Mode Operation

1-2 Getting Started

Figure 1-1 showstypical System Controller mode configuration. There are three
primary functions for System Controller mode:

RS—232/422
PERIPHERALS

1

Creating/Editing IBASIC
Programs

Using
Mass Storage
Devices

Controlling Instruments/
Devices/
Peripherals

In System Controller mode, you can create/edit IBASIC programs with an RS-232
computer or supported terminal and GET/SAVE program files. To create and edit
IBASIC programs, you can access the IBASIC computer from a supported
terminal, or from an RS-232 computer acting in terminal emulator mode. Seethe
Agilent E1406A Command Module User’s Manual for supported terminals.

In System Controller Mode, you can save programs and data to an external SS80
disk or tape drive on the GPIB, or to RAM volumes on the RAM disk. You can
create up to 16 RAM volumes (RAM VOLSs). RAM VOL 1 can be nonvolatile or
volatile, while RAM VOLs 0 and 2 through 16 can be volatile only. The IBASIC
computer can create DOS or LIF file systems and can use ASCII, BDAT, or
DOS/HP-UX files.

In System Controller mode, you can control the System instrument, plug-in module
instruments, and the IBASIC instrument using the IBASIC computer viathe
IBASIC interface or using the front panel or supported terminal viathe User
Interface.

You can control external GPIB devices (such as printers, voltmeters, disks, etc.)
using the IBASIC computer viathe GPIB interface. (If an external computer is
connected as an GPIB device, the computer should be configured as non-Active
Controller and Non-System Controller.)

When the interface is assigned to IBASIC, you can control an external RS-232
peripheral with the IBASIC computer viathe built-in RS-232 interface. Or, you can
control external RS-232/422 peripheras viathe seria interfaces on up to seven
Agilent E1324A plug-in modules.

The General Purpose Interface Bus (GPIB) is the implementation of the ANSI/IEEE 488.1 Standard Digital
Interface for Programmabl e | nstrumentation.

Getting Started 1-3

Talk/Listen Mode Figure 1-2 showstypica Talk/Listen mode configuration. There are three primary
Operation functionsfor Talk/Listen mode:

» Create/Edit IBASIC Programs
* Use Mass Storage Devices (RAM Volumes Only)
» Contral Instruments/Devices/Peripheras

GPIB TALK/LISTEN MODE (TYPICAL)
DEVICES

C-Size Mainframe

GPIB
COMPUTER

INTERFACE

SYSTEM
SS-80 INSTRUMENT

DISK OR TAPE i

MODULE
INSTRUMENTS

USER INTERFACE

IBASIC

IBASIC
INSTRUMENT

IBASIC INTERFACE

IBASIC
COMPUTER

TERMINAL

INTERFACE

RS—232/422
PERIPHERALS

E1400-I1B FIG1-2

Serial Port Assignments

A= Terminal Input
B= RS-232/422 Peripheral Control

Figure 1-2. Talk/Listen Mode of Operation

1-4 Getting Started

Creating/Editing IBASIC
Programs

Using
Mass Storage
Devices

Controlling Instruments/
Devices/
Peripherals

Note

In Talk/Listen mode, you can create/edit IBASIC programs with an RS-232
computer or supported terminal and GET/SAVE programfiles. To create and edit
IBASIC programs, you can access the IBASIC computer via from a supported
terminal, or from an RS-232 computer acting as aterminal emulator. Seethe
Agilent E1406 Command Module User’s Manual for supported terminals. You can
also accessthe IBASIC computer from an external computer via GPIB.

Creating/editing IBASIC programs is the same for Talk/Listen mode asfor System
Controller mode. In Talk/Listen mode, you can download programsto the IBASIC
computer from an externa (GPIB) computer.

In Talk/Listen Mode, you can save programs and data to IBASIC memory or to
RAM volumes on the RAM disk. Y ou can create up to 16 RAM volumes (RAM
VOLSs). RAM VOL 1 can be nonvolatile or volatile, while RAM VOLsO0 and 2
through 16 are aways volatile. The IBASIC computer can creste DOS or LIF
(Logica Interchange Format) file systems on RAM volumes and can use ASCII,
BDAT, and DOS/HP-UX files.

In Talk/Listen mode, you can control the System instrument, plug-in module
instruments, and the IBASIC instrument using the IBASIC computer viathe
IBASIC interface and a supported terminal viathe User Interface. With Talk/Listen
mode, an external computer and the IBASIC computer can both control instruments.

Y ou can control external GPIB devices (such as printers, voltmeters, disks, etc.)
using an external computer viathe (external) GPIB interface. For Talk/Listen
mode, the IBASIC computer cannot control external GPIB devices.

When the interface is assigned to IBASIC, you can control an external RS-232/422
peripheral viathe serial interfaces on up to seven Agilent E1324A plug-in modules.
Controlling RS-232/422 peripherals with Talk/Listen mode is the same as with
System Controller mode.

System software will let you assert control of external RS232 devices viathe
built-in RS-232 interface. Thisis not generally recommended, since it will leave
you without access to the User Interface unless you are using a plug-in Serial
Interface card and aterminal to access the User Interface.

Getting Started 1-5

Setting IBASIC
Mode of Operation

WARNING SHOCK HAZARD. Only service-trained personnel who are aware of the
hazards involved should install, remove, or configure the system.
Before you removing or installing a plug-in module, disconnect AC
power and field wiring from the mainframe.

The IBASIC mode of operation is set on the"GPIB Address’ switch #1 (labeled
"Controller") on the lower front right side of the IBASIC Command Module. See
Figure 1-3 for the switch location.

Setting the "Controller” switch to "1" and selecting RESET from the System
Instrument menu or cycling the C-size mainframe power sets System Controller
mode. Setting the " Controller" switch to "0" and selecting RESET from the
System Instrument menu or cycling Agilent E1400 power sets Tak/Listen mode.

L]

T
7 0

]

@ 7
/7
o) P Posesunn
Ve : [
SERVANT AREA ' !
- SWITCH LOCATON O |4 QQQHHHHU
O PN
.@
-, ¥
® T
. kbl Ll
E] Controller —1 R
1 DiognoStic— b 5 o v o o
° 1]
m LOGICAL ADDRESS () ﬁﬁﬁﬁﬁﬁﬁﬁ
SWITCH LOCATION o ;
‘‘‘‘‘‘‘‘
O

E1400-1B FIG1-3

Figure 1-3. Setting IBASIC Mode of Operation

1-6 Getting Started

Chapter 2 Contents

Using this Chapter 2-1

Usinga Terminal 2-2
Selectingthe IBASIC Instrument 2-2
IBASICDisplayo o 2-3
UTILSKeYS . . . o e e 2-4
Control Key SequenCes. o o o e 2-5
EditMode. e 2-6
Entering Program Lines e 2-6
LigingtheProgram e 2-7
Inserting LineS 2-8
Deetingand RecallingLines. 2-9

Editingin IBASIC 2-10
AutomaticSyntax Checking 2-10
Upper or Lower CaseLetters? 2-10
Copying Lines (By ChangingLineNumbers) 2-11
MoreDetailsabout EditMode 2-11
A Closer Look at ListingaProgram e 2-12
RenumberingaProgram L 2-13
Deeting MultipleLines 2-13
Making ProgramsReadable 2-13
DeletingaProgram e 2-15
Clearing IBASICMEMOrY oo e e e e e 2-15
IBASIC vs. HP Series 200/300 Editing Differences 2-16

Securing Programs 2-17

Chapter 2

Creating and Editing Programs

Using this Chapter

Important

NOTE

This chapter shows you how to create and edit programs using aremote RS-232
terminal or terminal emulator. General IBASIC editing information isaso in this

chapter.

The user interface to IBASIC follows the model of other mai nframe instruments.
IBASIC is selected like the instruments, and can use the display only when it isthe
selected instrument.

This chapter assumes that you are familiar with genera remote terminal or terminal
emulator operation. If thisisyour first time using aterminal or terminal emulator,
refer to the tutorials in Chapter 2 or 3 of the Mainframe Manual before attempting
to usethis chapter.

If you get "ERROR 2 MEMORY OVERFLOW" when running a program, one or
more local variables aretoo large for the default memory size (32768 bytes). For
example, the command INTEGER RDGS (16500) creates an integer array requiring
33000 bytes and will generate an error when you run the program. Y ou can solve
this problem by changing thelocal variablesto common variables with the COM
command (e.g.,, COM INTEGER RDGS (16500)) or by increasing memory size
with the PROG:MALL command (e.g., OUTPUT 80903;"PROG:MALL 50000").

Creating and Editing Programs 2-1

Using a Terminal

Selecting the IBASIC
Instrument

From aremote RS-232 terminal (or computer with terminal emulator), you can
execute IBASIC commands, develop and debug programs, and interact with
running programs. Programs can be edited with IBASIC's full screen editor. Refer
to the Mainframe User’'s Manual for information on supported terminals and how to
connect aterminal to the mainframe.

When an RS-232 terminal (or emulator) is connected to the mainframe, the terminal
will be automatically "captured” whenever mainframe power is cycled or the
System Instrument isreset. \When captured, the terminal displaysthe "Select an
instrument” menu. A typical termina display is:

To select the IBASIC Instrument, press the terminal’s function key corresponding to
theword IBASIC. For example, in the above display, press 5.

-

-

Select an instrument._

1] SYSTEM “UOLTMTR & D-A GDIG_I-0 QEEEFMS IBASIC 3 2 [:UTILS

~

J

NOTES

If the terminal has not been captured or does not display "Select an Instrument”, you
can select the IBASIC instrument by executing the SIIBASIC command from the
terminal.

2-2 Creating and Editing Programs

IBASIC Display After sdecting the IBASIC instrument, you should see a display similar to this (the

Instrument Name/
Logical Address —m —

PRINT/OUTPUT 2
Messages

display contents are explained below):

Status

G}QS IC_Z48: Idle \

DISP Messages/

INPUT Prompt ———,
Command/Input ———
Error Message/

Stepline

Q_2_3_4_ 23 1 SHEEEE- I - Y,
|

| SoftKey Labels

I nstrument Name/L ogical Address. Meansyou are using the IBASIC instrument.
Thisline does not scroll off the display.

PRINT/OUTPUT 2 Messages. These 18 or 19 lines display PRINT or OUTPUT
2 messages. Theselines are aso used for program editing in Edit Mode.

DISP Messages/INPUT Prompt: Thislinedisplays DISP messages and prompts
from INPUT statements.

Command/I nput: Thisline displays commands and user-entered datain response
to the INPUT statement. These lines scroll horizontally, if necessary (up to 160
characters).

Error Message/Stepline: This line displays error messages or the stepline (during
single stepping).

Status: Shows the state of the program as follows:

* Running: A command is being executed from the command input line, a
program is running, or aprogram lineis being executed by the STEP key.

» Paused: Program is paused (execute the CONT command to resume).

» Editing: You arein Edit Mode.

* Input?: IBASIC iswaiting for you to respond to an INPUT command.

» Idle: No program activity (none of the above operations).

Creating and Editing Programs 2-3

UTILS Keys

As with the front panel, when you select another instrument and then re-select
IBASIC, the state of IBASIC will be the same as it was when last selected. All
DISPs, prompts, error messages, user softkey labels, and input are re-written upon
re-selecting IBASIC, but any PRINTSs are not re-written.

As shown in the previous figure, one of the function keysislabelled UTILS. The
UTILSkey allows you to select the IBASIC utility function keys. After pressing
UTILS, you will seethese function key labels (each key is explained below):

-

IBASIC_248:

SIRST INSTZCLE_INSTe] PAUSE ;! STEP [e<BEEEM® RUN #RCL_PREVGRCL_NEXTESEL_INST

~

Idle

RST_INST

Resets the IBASIC instrument (equivalent of a BASIC Reset) and clears all IBASIC
input and output buffers (user interface and remote). RST_INST abortsarunning
program but does not destroy the program (see the *RST command in chapter 9 for
details).

CLR_INST

Clearsthe user interface input and output buffersfor IBASIC (remote buffers are
not cleared) and returns to the IBASIC instrument display (IBASIC 240:). Press
CLR_INST whenever IBASIC isbusy (except during power-on/reset sequence), is
not responding, or to abort acommand being entered from the terminal.
CLR_INST will not abort arunning program (use RST_INST for this).

PAUSE

Pauses a running program. Notice that there is not a Continue key available as a
soft key. To continue a program after pressing PAUSE, type and execute the
CONT command.

2-4 Creating and Editing Programs

Control Key Sequences

STEP

Executes aprogram line-by-line starting with the first program line.
RUN

Begins execution of aprogram.

RCL_PREV

Recallsthe last command entered viathe user interface. After recalling a
command, it can be edited or re-executed (by pressing Enter). You can recall from
a stack of previously executed commands by repeatedly pressing RCL_PREV.
When you reach the bottom of the stack (the last linein the buffer), pressing
RCL_PREV does nothing except to cause abeep. In Edit Mode, RCL_PREV
recallsthelast program line deleted with the DEL_L N key. Only the last deleted
line (oneline) can berecalled.

RCL_NEXT

Accesses commands in the opposite order to that of RCL_PREV. Pressing
RCL_NEXT does nothing until you have pressed RCL_PREYV at |east twice.
RCL_PREV key does not operatein Edit Mode.

SEL_INST

Returns to the Select an instrument menu.

These functions are available by way of the following Control key sequences:

Clear Instrument=CTRL C
Sdect an instrument menu=CTRL D
Reset Instrument = CTRL R

Recdl Prev =CTRL F
Back Space= CTRL H
Delete Char = CTRL X
Recal Next=CTRL B
Clear-to-End=CTRL L
Insert Line=CTRL O
Clear Line=CTRL U

Run=CTRL G
Pause= CTRL P
Cont=CTRL Y
Step=CTRL T

Move cursor to beginning of line =CTRL A
Move cursor to end of line=CTRL Z

Creating and Editing Programs 2-5

Edit Mode

Edit Mode allows you to create aprogram or to modify, add, or delete program
linesin an existing program. Y ou can get into Edit Mode by typing:

EDIT
followed by pressing Enter.
If there is no program in memory when you enter Edit Mode, the cursor appears on

aline with the number 10, which isthe default line number of the first program line.
A typical display in Edit Modeis:

-

-

IBASIC_248:

18 _

4 INS_LN = DEL_LN & EXIT g NGNS 2 [& UTILS

~

Editing

J

Entering Program

Lines

NOTE

At this point, you can begin entering program lines.

To enter aprogram ling, just type the IBASIC command characters at the keyboard.
If you make any errors while typing, use the Back Space key or the left and right
arrow keysto move the cursor to the erroneous character(s) and re-type them. The
Back Space key erases characters asit movesthe cursor. The left and right arrow
keys do not erase characters (usually, you will need to use the Delete key to remove
unwanted characters when using the left and right arrow keys). When editing, the
display isininsert mode. That is, typed characters will be inserted into the string at
the present cursor position.

If you move the cursor off of alinewith the up or down arrow key, thelineis not
entered and changes made to that line are lost.

When the typed-in program line is exactly the way you want it, press Enter to store
theline. (The cursor can be anywhere on the line when you store it; the system
reads the entire line regardless of cursor position.)

2-6 Creating and Editing Programs

For example, you can type-in the following program pressing Enter after each line:

4 N

IBASIC_248: Editing
18 FOR I=1 TO 28
28 PRINT "This is a test",I
38 NEXT I
48 END
58 _

Ki INS_LN =« DEL_LN & EXIT g IS 2 g 3 UTILS)

After entering the last line of the program, press EXIT to exit Edit mode. To
execute the program, either pressUTILS- RUN or type RUN and press Enter.

NOTE There are many ways to exit Edit Mode. 'Y our choice depends upon what you want
to do next. Pressing any one of the following utility keys exits Edit Mode and
returns to the IBASIC instrument display: PAUSE, RUN, STEP, ESC,
CLR_INST, or RST_INST.

Listing the Program You can list the program by executing the following command:
LIST Enter

The system lists the program on the terminal display (default) or whichever device
isthecurrent PRINTER IS device.

Creating and Editing Programs 2-7

Inserting Lines Linescan beeasily inserted into a program. As an example, assume that you want
toinsert aline between line 20 and line 30 in the existing program. In Edit Mode
(type EDIT, press Enter), use the up or down arrow key to place the cursor on line
30 and pressthe INS_L N key. The program display "opens' and anew line
number appears between line 20 and line 30:

4 N

IBASIC_248: Editing
18 FOR I=1 TO 28
28 PRINT "This is a test",I
21 _

38 MEXT 1
48 END

NGNS LN = DELLN o EXIT o e i U TILE I

Y ou can now begin typing. For example, type the following WAIT statement and
press Enter:

WAIT .5

Notice that as you entered the line, the line number for the next inserted line appears
automatically. You caninsert as many lines as you want with one insert operation.
While inserting lines, the system numbers the new lines in increments of 1 starting
with previous line number. If you insert more lines than are available between the
current line and the next line, the next program line is renumbered to alow the
insert operation to continue.

To cancel insert mode, pressf1 (INS_LN) again. You can also cancel insert mode
with an operation that causes anew current line to appear (such as scrolling with the
up/down arrow keys).

2-8 Creating and Editing Programs

Deleting and Recalling Linescanbedeleted one at atimeor in blocks. In Edit Mode, pressing f2
Lines (DEL_LN) deletesthelinewith the cursor onit. For example, to delete line 21, use
the up/down arrows to movethe cursor to line 21. Pressf2. Line 21 is deleted and

the display shows:

4 N

Editing

IBASIC_248:
18 FOR I=1 TO 28
28 PRINT "This is a test",I
38 HEXT I

48 END

4 INS_LN = DEL_LN & EXIT g JCEENES 2 ¢ & UTILS

If you pressDEL _L N by mistake, you can recover theline by pressing UTILS -
RCL_PREV and then storeit by pressing Enter. Only the last deleted line (one
line) can be recovered with this method.

When not in Edit Mode, you can use the DEL command to delete one or more
program lines. However, when deleting a small number of lines, using the f2
(DEL_L N) key has these advantages:

* You can seetheline before you delete it.
» Using DEL_LN savesthelineintherecal buffer (the DEL command does

not).

Therefore, DEL is more useful for deleting blocks of lines (described later in
"Deleting Multiple Lines").

Creating and Editing Programs 2-9

Editing in IBASIC This section introduces you to some general concepts and skillsinvolved in creating
and editing IBASIC programs.

Automatic Syntax Beforestoring aprogram line, the IBASIC computer checks for syntax errors and
Checking alsochangesthe |etter-case of keywords and identifiers. Immediate syntax
checking is abig advantage of writing programs on the IBASIC system. Many
programming errors can be detected during program entry. Thisincreases the
chances of having a program run properly and cuts debugging time. If the syntax of
thelineiscorrect, thelineis stored, and the next line number appearsin front of the
Ccursor.

If the system detects an error in the input line, it displays an error message at the
bottom of the display and placesthe cursor at the location responsible for the error.
For example, in the following program line, we have omitted the trailing quote:

10 PRINT "Short Message
Error 949 Syntax error at cursor

Keep in mind that there is an endless variety of human mistakes that might occur,
and that IBASIC is not very good at dealing with even slight ambiguities. Asa
result, you may not always agree with its diagnosis of the exact error or the error’s
location. (Asin the above example, the error is flagged at the leading quote even
though the error is caused by amissing trailing quote.) However, an error message
always means that something needsto be fixed. For acompletelist of errors and
their meanings, refer to the Error Appendix in the Agilent Instrument BASIC
Language Reference manual.

Upper or Lower Case ThelBASIC computer can recognize the upper- and lower-case requirements for
Letters? most elementsin astatement. Y ou can type an entire statement using all upper-case
or al lower-case letters. If the syntax is correct, and there are no "keyword
conflicts’ (discussed below), the system stores the program line. Upon LISTing or
EDITing the program, however, the system uses these conventions:

» Keywordsare all upper-caseletters (CAT, GET, DISP, etc.)
» All variable names are listed with the first letter in upper-case and the rest in
lower case (Varl, Rdgs, etc.).

This meansthat you usually do not have to bother with the Shift key when entering
aprogram line. If thereisa"keyword conflict”", however, an error isreported. A
keyword conflict occurs when you try to use a keyword as an identifier (variable
name, line label, or subprogram name). If you need to use akeyword as an
identifier, just change the letter-case of at least one letter in the identifier name. For
example, change CAT to Cat or cAT and then press Enter again. A word
containing a mixture of upper- and lower-case | etters is assumed to be an identifier.

The system’s assumptions about keywords versus identifiers won't cause problems
if the line has the proper syntax. However, if you are guessing at akeyword or
syntax, don't assume that you got the line right just because no error was reported
when you stored it. For example, assume that you are trying to PRINT a statement
to print ablank line; however, you misspell the keyword PRINT:

100 PRINY

2-10 Creating and Editing Programs

Copying Lines (By
Changing Line
Numbers)

More Details about
Edit Mode

The system does not report an error, because the line could legitimately be
interpreted as an implied call to asubprogram named "Priny”. In general, if the
system puts lower-case letters in something you thought was a keyword, then it
wasn't recognized as a keyword.

Although the IBASIC computer supplies aline number automatically, you are not
forced to use that number if you don’t want to. To change the line number, simply
back up the cursor and typein the line number you want to use. (The display
automatically goes to overwrite mode when editing line numbers.) Y ou can do this
to existing lines as away of copying them to another part of the program.

When you change a line number and store the line, the program is automatically
scrolled so that the line just stored is one line above the current-line position. In
other words, when you copy aline to a new location, the new location is displayed.

Here are some points to keep in mind when changing line numbers:

» Changing the line number of an existing line causes a copy operation, not a
move. Thelinetill existsinits origina location.

» Anexisting lineisreplaced by any line entered with the same line number.

» Becareful that you don't accidentally replace aline because of atyping
mistake in the line number.

The EDIT command allows aline identifier parameter. For example, the following
command tellsthe IBASIC computer to place the program on the display so that
line 140 isin the current-line position.

EDIT 140

Thelineidentifier also can be alinelabel. This makesit very easy to find a specific
program segment without needing to remember itsline number. For example,
assume that you want to edit a sorting routine that begins with aline labeled
Go_sort:. Simply type:

EDIT GO_SORT
Thelinelabeled Go_sort: is placed in the middle of the display.

When the line identifier is not supplied, IBASIC assumes a line number as follows:

o If thisisthefirst EDIT after apower-up, SCRATCH, SCRATCH A, or
GET, the assumed line number is 10.

» If EDIT isdoneimmediately after a program has paused because of an error,
the number of the line that generated the error is assumed.

» At any other time, EDIT assumes the number of the line that was being
edited the last time you were in Edit Mode.

Creating and Editing Programs 2-11

A Closer Look at Al or part of your program can be displayed or printed by executing a LIST
Listing a Program statement. TheLIST statement allows parameters that specify both the range of
lines to be listed and the printer address.

If you execute the LIST command without any parameters, the entire program is
listed on the system printer. The default system printer after a power-on or
SCRATCH A isthe mainframe display (when using the front panel) or the terminal
display (when using aterminal). The system printer can be changed using the
PRINTER IS statement.

Starting and ending line numbers can be specified in the LIST statement. For
example, the following command lists lines 100 through 200, inclusively.
LIST 100,200

The following example lists the last portion of the program, from line 1850 to the
end.

LIST 1850

Thelineidentifiers can aso be labels. For instance, the following command lists
the program from the line labeled "Rocket" to the end.

LIST Rocket

Y ou can specify a different system printer and then usethe LIST statement. For
example:

PRINTER IS 701
LIST

The parameter 701 identifies the printer connected to the mainframe’'s GPIB
interface (select code 7). The printer itself has an address setting of 01. To
designate the front panel or terminal display as the system printer, execute:

PRINTER IS 1

Y ou can aso specify the printer in the LIST statement. For example, the following
command sends the entire program listing to an GPIB printer (address 01) without
changing the system printer selection.

LIST #701

To specify both a printer and arange of lines, specify the printer number, a
semicolon, and then the line numbers. For example, this command lists lines 200
through 500 to an external printer.

LIST #701;200,500

2-12 Creating and Editing Programs

Renumbering a
Program

Deleting Multiple Lines

Making Programs
Readable

After an editing session with many deletes and inserts, the appearance of your
program can be improved by renumbering. This aso helps make room for long
inserts. Renumber programs with the REN command. The following example
renumbers the entire program in memory using a beginning number of 10 and
incremental line numbers of 10 (default values):

REN

Y ou can aso specify starting line number and the interval between lines. For
example, the following example renumbers the entire program, using 100 for the
first [ine number and an increment of 5.

REN 100,5

If the increment (second parameter) is not specified, 10 isassumed. For example,
the command below renumbers the entire program, using 1000 for the first line
number and an increment of 10.

REN 1000

Y ou can aso renumber only a specified portion of a program. For example, the
following command renumbers only line numbers in the range 1000 to 2000:

REN 1000,10 IN 1000,2000

The DEL command can be used to delete several linesin asingle operation. Blocks
of program lines can be deleted by using two line identifiersin the DEL command.

The first number or label identifies the start of the block to be deleted. The second
number or label identifies the end of the block to be deleted. Theline identifiers
must appear in the same order they do in the program. For example, the following
command deletes lines 100 through 200, inclusively.

DEL 100,200

This command deletes all the lines from the one labeled "Block2" to the end of the
program.

DEL Block2,32766

ThisIBASIC language makes it easy to write self-documenting programs. Besides
IBASIC's standard REM (remark) statement, additional documentation features are:

» Descriptive keywords (such as REPEAT. . UNTIL, LOOP, and so forth)
» Descriptive variable names (up to 15 characters)

» Descriptive line labels (up to 15 characters)

» End-of-line comments.

Creating and Editing Programs 2-13

Contrast Between Although this section deals primarily with commenting methods, al of the above
Documented and features work together to make areadable program. The following examples show
Undocumented Programs two versions of the same program. The first version is uncommented and uses
"traditional" variable names.

5 IRE-SAVE "TAX1"

10 PRINTER IS 1

20 A=.03

30 B=.03

40 X=0

50 Y=0

60 C=A+B

70 PRINT "Item Total Total"
80 PRINT "Price Tax Cost"
90 PRINT " "
100 P=0

110 INPUT "input item price",P
120 D=P*C

130 E=P+D

140 X=X+D

150 Y=Y+E

160 DISP "tax =";D;"item cost =";E
170 WAIT 5

180 PRINT P,X,Y

190 GOTO 100

200 END

The second version uses the features of Agilent’s IBASIC language to make the
program more easily understood.

5 IRE-SAVE "TAX2"

10 IThis program computes the sales tax for

20 'a list of prices. Item prices are input

30 lindividually. The tax and total cost for

40 'each item are displayed. The running

50 'totals for tax and cost are printed on

60 !'the display.

70!

80 ISales tax rates are assigned on lines X and x.
90 'The rates used in this program were in effect
100 'as of 1/1/90

110!

120 PRINTER IS 1 IUse display for printout
130 State tax=.03 IState tax = 3%

140 City_tax=.03 ICity tax = 3%

150!

160 Total_tax=0 lInitialize variables

170 Total_cost=0

2-14 Creating and Editing Programs

Commenting Methods

Deleting a Program

Clearing IBASIC
Memory

180 Tax_rate=State tax+City_tax

190 !Print column headers

200 PRINT "Item Total Total"

210 PRINT "Price Tax Cost"

220 PRINT " "

230!

240 LOOP

250 Price=0

260 INPUT "input item price",Price

270 Tax=Price*Tax_rate

280 Item_cost=Price+Tax

290 Total tax=Total tax+Tax !lAccumulate totals
300 Total cost=Total cost+ltem_cost

310 DISP "Tax =";Tax;"ltem cost =";ltem_cost

320 WAIT 5

330 PRINT Price, Total_tax,Total _cost

340 END LOOP IRepeat loop for next item
350 END

There are two methods for including commentsin your programs. The use of an
exclamation point is shown in the second example program. The exclamation point
marks the boundary between an executabl e statement and comment text. There
does not have to be an executable statement on a line containing a comment.
Therefore, the exclamation point can be used to introduce a line of comments, to
add comments to a statement, or sSimply to create a"blank” lineto separate program
segments. Exclamation points may beindented as necessary to help keep the
comments neat.

The REM statement can a so be used for comments. The exclamation point is
neater and more flexible, but the REM statement provides compatibility with other
BASIC languages. The REM keyword must be the first entry after theline
identifier and must be followed by at least one blank.

Y ou can use the SCRATCH command to delete al program lines from the IBASIC
computer’s memory. SCRATCH also clears dll variables that are not in COM. (See
the "Instrument BASIC Programming Techniques' manual for a description of
COM.)

Y ou can use the SCRATCH C command to clear all variables fromthe IBASIC
computer’s memory. The current program and any softkey definitions are left
intact.

Y ou can usethe SCRATCH A command to clear almost everything from the
IBASIC computer’s memory, restoring the system to its power-on state. The only
things that are not cleared are the Recall buffers and the real-time clock.

Creating and Editing Programs 2-15

IBASIC vs. HP Series IBASIC Edit Mode is similar to that used on HP Series 200/300 BASIC language
200/300 Editing computers. However, there are some differences. If you are familiar with the

Differences

Series 200/300 computers you will want to note the following IBASIC Edit Mode

differences.

2-16 Creating and Editing Programs

Y ou cannot execute acommand whilein IBASIC Edit Mode. On Series
200/300 computers, you can execute aline in Edit Mode by entering the line
without aline number. Thisfeature is commonly used with aprogram line
such as:

10 'RE-SAVE "Progname"

Y ou can then re-save the program by del eting the line number and ! and
executing the command. This cannot bedonein IBASIC.

InIBASIC, each program lineis split into two fields; the line number field
(first 5 characters) and the text field. Pressing Shift left arrow movesthe
cursor to the beginning of the text field, not to the beginning of theline
number field as on Series 200/300 computers.

The IBASIC editor isamost dwaysin insert mode. That is, it inserts
charactersinto the line rather than overwriting them. On Series 200/300
Compuiters, akey alows you to toggle between insert mode and overwrite
mode. The IBASIC editor automatically goes into overwrite mode when you
are editing the line number field of the program line. Only numbers and
spaces can be typed into the line number field.

In IBASIC Edit Mode, the up arrow key moves the cursor to the program
line above the present line. The down arrow key moves to the program line
below the present line. Thisis opposite to the directions on Series 200/300
Computers.

InIBASIC Edit Mode, the RCL_PREV key recalls only the most recently
deleted line. Therecal buffer isonly 1 line deep and is cleared whenever
you exit Edit Mode.

It is possible to enter program lines from the command input line (outside of
Edit Mode) that will be too long to handle in Edit Mode. When this
happens, IBASIC will place an asterisk (*) at the beginning of the program
line. If you try to edit the line (by deleting the asterisk) the line will be
truncated by the editor. HP Series 200/300 computers behave in asimilar
manner but do not place the asterisk at the beginning of the line.

Securin g Prog rams With the IBASIC system, you can use the SECURE statement to prevent program
ling(s) from being edited or listed.

CAUTION Once aprogram is secured, it cannot be unsecured. Therefore, you should keep an
unsecured back-up copy of all programs.

Executing this command prevents lines 30 through 60 of an existing program from
being edited or listed:

SECURE 30, 60

Hereis what the program might look like--either with the editor or as the output of a
LIST statement:

10 ! Example of SECUREd program.
20 ! Begin password check routine.
30*

40*

50*

60*

70 ! End of password check.

80 END

If you want to secure the entire program, use this statement:

SECURE

Creating and Editing Programs 2-17

2-18 Creating and Editing Programs

Chapter 3 Contents

How to Use ThisChapter 3-1

RAM Volumes 3-1
Volatilevs. NonvolatileRAM Volumes 31
System Memory Space ASSIgNMENtS oo 3-2
CreatingRAM Volume 16 e 32
Cregting Nonvolatile RAM Volumel 34
Cregting VolatileRAM Volumes e 3-6
CheckingaVolumesFormat. 3-7

In Case of Difficulty 39

Chapter 3

Using RAM Volumes

How to Use This
Chapter

Y ou can create from 1 to 16 RAM volumes in system memory and an additional
RAM volume in USER NRAM or optional plug-in memory. Likevolumesona
disk drive, RAM volumes are used for storing programs and data. This chapter
describes the type of RAM volumes and shows you how to create each type of
RAM volume.

RAM Volumes

NOTE

Volatile vs. Nonvolatile
RAM Volumes

You can initialize RAM volumesin either LIF or DOS formats. Y ou have these
choices for creating RAM Volumes:

* You can creste RAM Volume 1 in volatile or nonvolatile system memory.

* You can creste RAM volume 0 and volumes 2 through 15 in volatile system
memory only.

* You can creste RAM volume 16 in nonvolatile user NRAM or optional
plug-in memory.

When you reserve space for RAM Volume 1 using DIAG:RDISK:CRE, RAM
Volume 1 isplaced in nonvolatile System Memory. If you do not reserve space for
RAM Volume1, it will be placed in volatile System Memory. RAM Volumes0
and 2 through 15 are always placed in volatile System Memory.

Data stored in volatile memory islost when power is removed or the mainframeis
reset; datain nonvolatile memory is retained when power isremoved. When RAM
Volume 1 isin non-volatile memory, each 256-byte sector has a checksum
associated with it. When a sector iswritten to, a checksum is computed and stored.
Whenever the sector isread from, the checksum is re-computed and compared to
the stored checksum. If the two checksums are different, "ERROR 88 Read data
error” is generated to indicate the RAM Volumeis corrupted. This ensuresthat a
corrupt RAM Volume is detected before the dataon it is used.

Onvolatile RAM volumes (including RAM Volume 1if it isvolatile) and RAM
Volume 16, no checksum is saved. The access to volatile RAM is done at the
fastest possible speed with a minimum of overhead. Read/write operations on
RAM Volume 1 is about 20% slower when in non-volatile memory vs. volatile
memory.

Using RAM Volumes 3-1

System Memory Space Figure 3-1 showstypica system memory space consisting of softloaded instrument
Assignments drivers (optional), User NRAM, Nonvolatile RAM Volume 1, and volatile RAM
Volumes 0, and 2 through 15.

Volatile RAM Volumes

0.2-1 Volatile System Memory

Nonvolatile
RAM Volume 1

User Nonvolatile

AAM NBAM) Nonvolatile System Memory

Softloaded Intrument
Drivers

Figure 3-1. System Memory Space Assignments

CAUTION Softloaded Instrument Drivers, User Nonvolatile RAM (NRAM), and RAM
Volume 1 compete for the nonvolatile memory space. This means that changing a
memory areainvalidates the memory area(s) aboveit asshown in Figure 3-1. The
order in which memory is allocated is very important. For example, creating or
changing the size of the Instrument Driver area after creating NRAM and RAM
Volume 1, invalidates NRAM and RAM Volume 1. Similarly, creating NRAM or
changing the size of NRAM invalidates a previoudly created RAM Volume 1 and
any datain RAM Volume 1 is destroyed.

Always allocate nonvolatile memory in this order:
1. Softload instrument drivers, if any.
2. Create User NRAM, if any.
3. Create RAM Volume 1.

After reserving this space, DO NOT change the size of the Instrument Driver area
or change the size of User NRAM.

3-2 Using RAM Volumes

Creating RAM
Volume 16

NOTE

Procedure

NOTES

RAM Volume 16 alows you to use User NRAM or optiona plug-in memory as a
RAM Volume. Accessto RAM Volume 16 isthe same as for volatile RAM
volumes (i.e., no checksums are computed and accessis as fast as possible). When
creating RAM volum 16, keep these thingsin mind:

* WiththeINITIALIZE command, the size parameter isignored and the
resulting size of the RAM volume will fill the space allocated for it by the
DIAG:FILES1,. .. and DIAG:FILES 2,. . . commands.

» If the memorydefined by the DIAG:FILES 1 and DIAG:FILES 2 command
isno longer available (that is, you set NRAM to O or softloaded a driver
which moved the base of NRAM), you must use the DIAG:FILES 1 and
DIAG:FILES 2 commands to reset the addresses of RAM volume 16 before
attempting to useit again. Failure to do this may result in a system crash.

The following procedure and example assume you are placing RAM Volume 16 in
User NRAM. If you want to place RAM Volume 16 in plug-in memory, skip steps
1through 3, determine the starting address (refer to the plug-in memory
documentation) , and continue with steps 4 and 5.

1. Allocate spacein Nonvolatile User RAM (NRAM) by executing
DIAG:NRAM:CRE<#bytes> from the System Instrument (this destroys any
existing datain NRAM).

2. Re-Boot the system by executing DIAG:BOOT from the System Instrument
or by cycling mainframe power.

3. Find the starting address for NRAM by executing DIAG:NRAM:ADDR?
from the System Instrument.

4. Reserve RAM volume 16 space by using the DIAG:FILES 1,<start address>
and the DIAG:FILES 2, <end address> commands. Where
<start address> is the starting address for NRAM
<end address> is <start address> + number of bytesreserved for RAM
Volume 16.

5. Toinitialize RAM Volume 16, from the IBASIC instrument, execute one of
the following commands:

INITIALIZE "LIF:MEMORY,0,16"
Initialize RAM Volume 16 in LIF format
INITIALIZE "DOS:MEMORY,0,16"
Initialize RAM Volume 16 in DOS format

Since you are not specifying asizein the INITIALIZE command, the default size
fills reserved memory.

The minimum size for aDOS disk is 2560 bytes.

The minimum size for aLIF disk is 1536 bytes.

Using RAM Volumes 3-3

Example: Creating RAM
Volume 16

CAUTION

Creating Nonvolatile
RAM Volume 1

CAUTION

3-4 Using RAM Volumes

Thisexample creates RAM Volume 16 (in DOS format), 15k byteslong, in User
NRAM.

If NRAM has aready been created, executing the following command destroys any
existing information in NRAM.

From the System | nstrument, execute:

DIAG:NRAM:CRE 15000

Reserve 15k bytes of User RAM (NRAM)
DIAG:BOOT

Re-boot the system to create NRAM

From the System I nstrument, execute:

DIAG:NRAM:ADDR?
Determine starting address for NRAM (in this example, starting
address = +16252928)
From the IBASIC Instrument, execute:

OUTPUT 80930;"DIAG:FILES 1,16252928"

Define starting address for RAM Volume
OUTPUT 80930;"DIAG:FILES 2,16267928"

Define ending point for RAM Volume (start address + #bytes)
INITIALIZE "DOS:MEMORY,0,16"

Initialize RAM Volume 16 (DOSformat) to fill reserved NRAM

When you reserve space for RAM Volume 1, it will be placed in nonvolatile
memory. This procedure shows you the stepsinvolved in creating a nonvolatile
RAM Volume 1. This procedure can be donein either System Controller or
Talk/Listen mode. An example showing how to create a nonvolatile RAM Volume
1 containing 100 sectors of 256 bytes each, follows this procedure.

Re-initializing aRAM Volume destroys any data currently stored on that volume
(volatile and nonvoldtile).

Procedure 1. Check the maximum RAM volume space available (thisis an optiona step),
by executing DIAG:RDISK:CRE? MAX from the System Instrument.

2. Reserve RAM Volume 1 space by executing DIAG:RDISK:CRE<size>
from the System Instrument. Where <size> = (Number of Sectorsx 258) +
24. Each sector requires 258 bytes (256 bytes for data, 2 bytesfor
checksum). The extra 24 bytesisfor aheader. For LIF format, the
minimum number of sectorsis 6, so the minimum size = (6 x 258) + 24 =
1572 bytes). For DOS format, the minimum number of sectorsis 10, so the
minimum size = (10 x 258) + 24 = 2604 bytes. (NOTE: If you did not
reserve enough memory space, ERROR 67 Bad mass storage parameter is
generated when you execute the INITIALIZE command in the next step.)

3. Re-Boot the system by executing DIAG:BOOT from the System Instrument
or by cycling mainframe power.

4. Toinitiaize RAM Volume 1, from the IBASIC instrument, execute one of
the following commands:

INITIALIZE "LIF:MEMORY,0,1",<n>
Initialize RAM Volume 1 in LIF format

INITIALIZE "DOS:MEMORY,0,1",<n>
Initialize RAM Volume 1 in DOSformat

Where: <n> = number of 256-byte sectors; 6 sectors minimum for LIF; 10
sectors minimum for DOS. If you do not specify asize, the default size is
the size of reserved memory determined by INT [(size of RDISK - 24) /
258]. For example, if you use DIAG:RDISK:CRE 65536, the default size
for nonvolatile RAM Volume 1 = INT [(65536 - 24) / 258] = 253 sectors.

Example: Creating Thisexample creates nonvolatile RAM Volume 1 (in LIF format) with 100 sectors.
Nonvolatile RAM Volume 1

From the System | nstrument, execute:

DIAG:RDISK:CRE? MAX
Return the number of bytes available for RAM Vol. 1
DIAG:RDISK:CRE 25824

Reserve 100, 258 byte sectors (256 bytes for data and a 2 byte
checksumin each sector) plus 24 bytes for the header.

DIAG:BOOT Re-boot the system
From the IBASI C I nstrument, execute:

INITIALIZE "LIF:MEMORY,0,1",100

Initialize RAM Volume 1 (LIF format) for 100 sectors of
nonvol atile RAM

Using RAM Volumes 3-5

Creating Volatile RAM
Volumes

Procedure

Example: Creating Volatile
RAM Volumes

3-6 Using RAM Volumes

Y ou can creste RAM Volume 1 as nonvolatile or volatileand RAM Volumes 0 and
2 through 15 asvolatile. (When you do not reserve space for RAM Volume 1, it
will be placed in volatile memory.) This procedure showsyou the stepsinvolved in
creating volatile RAM Volumes. Y ou can do this procedure in either System
Controller or Talk/Listen mode. An example showing how to create avolétile
RAM Volume 1 and aRAM Volume 2 follows this procedure.

1. Tocreate volatile RAM Volume 0 execute one of the following commands

from the IBASIC instrument:
INITIALIZE "LIF:MEMORY,0,0", <n>

Initialize volume O in LIF format
INITIALIZE "DOS:MEMORY,0,0",<n>

Initialize volume 0 in DOS format
Where: <n> = number of 256-byte sectors; 6 sectors minimum for LIF, 10
sectors minimum for DOS. If you do not specify <n>, the default sizeis
1056 sectors.

2. To create volatile RAM volume 1 (if nonvolatile RAM Volume 1 space has
not been assigned) , execute one of the following commands from the
IBASIC instrument:

INITIALIZE "LIF:MEMORY,0,1", <n>
Initialize volume 1Lin LIF

INITIALIZE "DOS:MEMORY,0,1", <n>
Initialize volume 1in DOS

3. Repeat step 2 for each RAM volume you want to create each time
incrementing the volume number (last field) in the command. For example,
toinitialize volume 2 for 50 sectors:

INITIALIZE "LIF:-MEMORY,0,2",50
Initializes volume 2 in LIF

INITIALIZE "DOS:MEMORY,0,2",50
Initializes volume 2 in DOS

Thisexample creates volatile RAM Volume 1 (in DOS format) with 100 sectors of
256 bytes and volatile RAM Volume 2 (in LIF format) with 20 sectors of 256 bytes.

From the System | nstrument, execute:

DIAG:RDISK:CREATE 0

Ensure 0 memory space for nonvolatile RAM Volume 1
DIAG:BOOT

Re-boot the system

From the IBASI C I nstrument, execute:

INITIALIZE "DOS:MEMORY,0,1",100

Initialize RAM Volume 1 (DOS format) for 100 sectors of volatile
RAM

INITIALIZE "LIF:MEMORY,0,2",20

Initialize RAM Volume 2 (LIF format) for 20 sectors (256 bytes
each) of volatile RAM

Checking a Volume’s You can determine whether or not adisk or RAM volume is initialized and the type
Format of format (DOS or LIF) by catal oging the disk volume with the CAT command.
The CAT command returns the contents of a mass storage volume (L IF format) or
volume/directory (DOS format).

CAT ":,700,0,0" Checks hard disk volume 0
catalog

CAT ",700,1" Checks flexible disk catalog

CAT "MEMORY,0,0" Checks RAM Volume 0O catal og

If the disk volumeis initialized, a catalog is displayed showing the contents of the
volume. Y ou can determine whether the volume is DOS or LIF by looking at the
catalog header. A LIF header/file listing is distinguished by the VVolume Label
"HP75K" and looks like this:

/,iBHSIC_24B: N
DIRECTORY: “:C588,78A
LABEL:
FORMAT: DOS
AVAILABLE SPACE: 39856
FILE NUM REC MODIFIED
FILE NAME TYPE RECE LEN DATE TIME PERMISSION
PROGRAMS DIR a 1 38—-Jan—99 4:38 RUXRUXRUX
DATA DIR a 1 38-Jan—99 4:49 RUXRUXRUX
TESTS DIR a 1 38-Jan—99 4:49 RUXRUXRUX

e e ———

Using RAM Volumes 3-7

A DOS header/directory listing is distinguished by the Format "DOS" label and

looks like this:

/,iBHSIC_24B:
DIRECTORY: “:C588,78A

R e—— —

LABEL:
FORMAT: DOS
AVAILABLE SPACE: 39856

FILE NUM REC MODIFIED
FILE NAME TYPE RECE LEN DATE TIME PERMISSION
PROGRAMS DIR a 1 38—-Jan—99 4:38 RUXRUXRUX
DATA DIR a 1 38-Jan—99 4:49 RUXRUXRUX
TESTS DIR a 1 38-Jan—99 4:49 RUXRUXRUX

et

For aflexible disk or the hard disk, if the disk or disk volume has not been
initialized, "ERROR 85 Media uninitialized" occurs.

If aRAM Volume has not been initidized, "ERROR 76 Incorrect unit code in

msvs' occurs.

3-8 Using RAM Volumes

In Case of Difficulty

Mass Storage Error Message

Cause

Error 52 Improper mass storage volume specifier.

The characters used for mass storage volume specified do not form avalid specifier. This
could be amissing colon, too many parameters, illegal characters, etc.

Error 53

Improper file name.

The file nameistoo long or has characters that are not allowed. (Can also occur when using
"*" or "?" in afile name when wildcards are not enabled or when awildcard was used in
other than the right-most position of afile name.) A LIF file name can be up to 10
characterslong and is case dependant. LIF file names may contain any letter of the alphabet
(upper and lower case), the digits 0-9, and the underscore character (). You can aso use
theinternational characters: CHR$(160) - CHR$(254). A DOS file name can be up to 8
characterslong with an optional extension name of up to 3 characters. DOS file names may
contain any letter of the alphabet, the digits 0-9, theinternational characters CHR$(160) -
CHR$(254), and these characters:

1#$%(O)-~_{}-~

Error 54

Duplicate file name.

The specified file name aready exists. Itisillega to have two files with the same name on
one LIF volumeor in aDOS directory.

Error 55

Directory overflow.

Although there may be room on the media for the file, there is no room for another file
name. LIF Disksinitialized by Agilent Instrument BASIC have room for over 100 entriesin
thedirectory. Small RAM volumes allow fewer entries.

Error 56

File name is undefined.

The specified file name does not exist or awildcard operation did not match any file. Check
the contents of the disk witha CAT command.

Error 58

Improper file type.

Many mass storage operations are limited to certain file types.

Error 59

End of file or buffer found.

For files: No data left when reading afile, or no space left when writing afile. For buffers:
No data left for an ENTER, or no buffer space left for an OUTPUT or user RAM volume
too small.

Error 60

End of record found in random mode.

Attempt to ENTER or OUTPUT afield that is larger than a defined record.

Error 62

Protect code violation.

Failure to specify the protect code of a protected file, or attempting to protect afile of the
wrong type.

Error 64

Mass storage media overflow.

Thedisk is full. (Thereis not enough free space for the specified file size, or not enough
contiguous free space on aLIF disk.) Or you have specified a size for anonvolatile RAM
volume that is larger than the reserved memory.

Error 66

INITIALIZE failed.

Too many bad tracks found. The disk is defective, damaged, or dirty.

Error 67

I1legal mass storage parameter.

A mass storage command contains a parameter that is out of range, such as a negative
record number or an out of range number of records. Also occursif you did not reserve
enough memory space for a nonvolatile RAM volume.

Error 68

Syntax error occurred during GET.

One or more linesin the file could not be stored as valid program lines. (These lines will be
stored as commented lines.) Also occursif the first linein the file does not start with avalid
line number.

Error 72

Drive not found or bad address.

The mass storage unit specifier contains an improper device selector, the disk driveis still
powering-up, or no disk drive is connected.

Error 73

specifier.

Improper device type in mass storage volume

The volume specifier has the correct general form, but the characters used for a device type
are not recognized.

Error 76

Incorrect unit number in mass storage

volume specifier.

Uninitialized RAM volume or the volume specifier contains a unit number that does not
exist on the specified device.

Error 77 Operation not allowed on open file. The specified file is assigned to an 1/0 path name which has not been closed.

Error 78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on a compatible system. Could also
be abad disk. Can also occur when switching disk formats (DOS, LIF)

Error 79 File open on target device. Attempt to copy an entire volume with afile open on the destination disk.

Error 80 Disk changed or not in drive. No disk in the drive or the drive door was opened while afile was assigned.

Error 81 Mass storage hardware failure. Also occurs when the disk is pinched and not turning. Try reinserting the disk.

Error 82 Mass storage volume not present. Hardware problem or drive does not exist.

Error 83 Write protected. Attempting to write to a write-protected disk. Thisincludes many operations such as
PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

Error 84 Record not found. Usually indicates that the media has not been initialized.

Error 85 Medianot initialized.

Error 87 Record address error. Usually indicates a problem with the media.

Error 88 Read dataerror. The mediais damaged, or a nonvolatile RAM Volume is corrupted.

Error 89 Checkread error. Error detected when reading data. The mediais probably damaged.

Using RAM Volumes 3-9

Mass Storage Error Message

Cause

Error 90 Mass storage system error.

Usually a problem with the hardware or the media.

Error 93 Incorrect volume code in mass storage
volume specifier.

The volume specifier contains a volume number that does not exist on the specified device.

Error 183 Permission denied.

Attempt to PURGE or write to aread only file

Error 189 Too many open files.

Only afixed number of files can be open at onetime. Close some of the files.

Error 291 Too many matches.

Too many matches on wildcard operation.

Error 292 Wildcards not alowed.

Some mass storage commands such as CREATE, INITIALIZE, and SAVE do not alow
wildcards.

Error 293 Operation failed on somefiles.

The wildcard operation attempted does not succeed on dl files found. When using
wildcards and copying files from DOS to LIF, you may have DOS file names that are not
legd LIF names. When this happens, legal filesare copied, illegal files are skipped, and
this error is generated.

Error 294 Wildcard matches >1 item.

A wildcard operating in File Name Completion mode expanded to more than one file name.

Error 295 Improper destination type.

Multiple files must be copied to directory not file.

Error 296 Unable to overwritefile.

Unable to overwrite file during copy operation.

Error 460 Directory not empty.

Attempt to PURGE adirectory containing files (you must PURGE files first)

3-10 Using RAM Volumes

Chapter 4 Contents

How to Use ThisChapter 4-1

File Systems 4-1
Volumes, Directories, and Files 4-1
LIFFleStructure. o 4-2
DOSFileStructure 4-3
Specifying the Directory, File,andVolume 4-4
Specifying aDefault Directory/Volume L 4-7
Managing Files 4-9
Creating DIrectories 0 o 4-9
CatdogingFiles 4-9
Saving Programs L e 4-10
Re-Saving Programs e 4-11
GettingPrograms 4-12
CopyingFiles e 4-13
CopyinganEntireVolume e 4-13
Renaming Files 4-14
Purging Files 4-14
Purging DOSDITeCtories o o e e e e e 4-14
Autostarting Programs 4-15
IBASIC File Types 4-17
ASCILFIles . . . o 4-17
BDATHIES. 4-17
DIRFIEs 4-17
DOSHP-UX Fles e 4-17
Using Wildcards 4-18
Enabling/DisablingWildcards 4-18
FileNameswith Extensions i 4-18
IBASIC Commandsthat useWildcards 4-19

Behavior Differencesbetween LIF and DOSFile Systems 4-22

ASCIl and BDAT FilesonDOSDISKS o oo i e 4-22
SAVEonDOSandLIF e 4-22
RE-SAVEonDOSandLIF 4-22
COPY toffromDOSandLIF 4-23
DOS/HP-UX FileExtensibility 4-23

In Case of Difficulty 4-24

Chapter 4

M ass Stor age Concepts

How to Use This
Chapter

NOTE

In System Controller Mode, IBASIC can access RAM volumes and externa SS-80
disk and tape drives. In Talk/Listen Mode, IBASIC can access Ram Volumes only.
This chapter describes how to use these mass storage devices, discusses the LIF and
DOS file systems, and shows you how to manage filesin either system. This
chapter contains the foll owing sections:

» Filesystems (LIF and DOS)

* Managing files

» IBASICfiletypes

» Using wildcards

» Behavior differences between LIF and DOS file systems.

All commands shown in this chapter are executed from the IBASIC instrument
(refer to Chapter 2 for more information on how to access the IBASIC instrument).

IBASIC uses SS80 driversthat operate GPIB disk drives such asthe HP 9122,
9127, 9133, 9144, and 9153 drives.

When initializing in LIF, the default value for the Initializing Option is0. When
initializing in DOS, the default value for the Initiaizing Option is 2 for the HP
9122, 9127, and 9133 drives; 16 for the HP 9153 drive; and O for any other drive.
The default values do not apply when the GPIB address of the disk driveis8 or 9
(you must specify values). Refer to your disk drive manual for more information.

File Systems

Volumes, Directories,
and Files

IBASIC supports both LIF (HP's Logical Interchange Format) and MS-DOSfile
systems. The LIF file system isidentical to that used by HP Series 200/300 BASIC
language computers. LIFisaflat file system, that is, it cannot support
subdirectories. The DOS file system is identical to that used on Personal Computers
(PCs). TheDOSfile system ishierarchical, that is, it supports subdirectories.

The information on a mass storage device is organized into volumes, directories,
and files. To describe volumes, directories, and fileswe will use afile cabinet as an
analogy. Asshown in Figure 4-1, the mass storage device (disk drive or RAM disk)
isanalogous to the file cabinet itself.

A volumeiswhere the directory, subdirectories (DOS only), and files are stored and
isrepresented by one of the drawers in the cabinet. The hard disk can haveup to 6
volumes, the RAM disk can have up to 17 volumes, and a flexible disk has only one
volume.

Mass Storage Concepts 4-1

File Cabinet
(Mass Storage Device)

Tabbed Dividers
Represent Files
or Directories

Each Drawer
Represents a Volume

FILE CAB

Figure 4-1. Mass Storage/File Cabinet Analogy

LIF File Structure If the volumewas formatted in LIF, each drawer of the file cabinet contains alarge
folder that represents the LIF directory. Thisdirectory holds the names and
contents of all files on the volume. A file can be either an IBASIC program fileor a
datafile (voltmeter readings, for example). Figure 4-2 is a graphical representation
of atypical LIF directory and a number of files. The directory has no nameand is
shown in abox; the files are shown without boxes.

LIF Directory (no name)

| U
COUNTS CTDATA DGFILE DMFILE LIST 1 MISC MTGS PROG_A RB44

Figure 4-2. Typical LIF Directory/Files

4-2 Mass Storage Concepts

DOS File Structure

If the volume was formatted in DOS, each drawer of the file cabinet containsalarge
folder that represents the DOS root directory. Within the folder are anumber of
named tab dividers each representing alower-level directory (sometimes called
subdirectories). Each lower-level directory can contain a number of program or
datafiles. It can aso contain the names of even lower-level directories. Similarly,
these lower-level directories can also contain files or the names of even lower-level
directories, and so on. This hierarchical directory/file structure is known as the DOS
file structure.

Figure 4-3 isa graphical representation of the directories and filesin atypical DOS
file structure. The root directory and lower-level directories are shown in boxes and
files are shown without boxes. Directories are arranged in levels. When you format
aDOS disk volume, an unnamed root directory is created automatically on that
volume. The root directory isthe highest level on the volume. When you creste a
directory within the root directory, the new directory isalevel below theroot.

From this directory, you can create directories at the next lower level, and so on.

root
L MTes
—SCHED
MISC
USERS PROGRAMS
Eusm
CTDATA
DAVE PETE CONRAD VOLTMET
SUSAN \:SCANPROG kpp{ogq
ANDY COUNTS TEST
MYDIR E’;(N)‘EEA DGFILE

DONNA
ANDY
CHRIS
JEREMY

Figure 4-3. DOS File Structure

Mass Storage Concepts 4-3

Specifying the Filesareidentified by specifying the following information:

Directory, File, and The directory path where the file resides (DOS format only)
Volume « Thefilename

» The mass storage volume specifier (MSVYS)

The syntax of thefile specifier is:

7N file (Y
\w/ name _/
L directory J [volume J
path specifier

NN

DOS Format Only

Directory Path To accessadirectory or file, you must specify itslocation in the hierarchical
(DOS Format Only) directory structure. You do this by listing the directories that trace a path to the
directory or file of interest. Thisiscalled adirectory path. Typically, you begin the
path with abackslash (\) to indicate theroot directory. Y ou then list every directory
in the path, in hierarchical order, and separate directory names and file names with a
backslash. (Y ou can also use forward slashes (/) to separate names.) Figure 4-4

shows atypical directory path from the root to the file "PROG_A" . In acommand,
this path is expressed as:

"USERS\PETE\PROG_A"

root

/{ MTGS
—SCHED
MisC
USERS PROGRAMS

\: LIST_1
CTDATA

DAVE PETE [CONRAD| VOLTMET
Em P e
MYDIR

TEST
DANIEL
DONNA
ANDY
CHRIS
JEREMY

DGFILE
PROG_A

Figure 4-4. Typical Directory Path

4-4 Mass Storage Concepts

The directory path to afile begins at either the root level or the current working
directory. Each mass storage device has a current working directory. The current
working directory isthe directory specified by the most recent MASS STORAGE
IS (or MSI) command on that drive. (If no MSV Sis specified in acommand, the
fileis assumed to be on the drive specified by the most recent MSI command.) If
the directory or fileislocated in adirectory at alevel below your current working
directory, you need only specify the route (without a leading slash or backslash)
from the current directory. For example, if you are currently in the USERS
directory, then the path to PROG_A is as shown Figure 4-5. In acommand, this
path is expressed as:

"PETE\PROG_A"
root
_MTGS
—SCHED
MisC
USERS PROGRAMS
Eusu
CTDATA
DAVE PETE VOLTMET
EUSAN EPROGW
ANDY TEST
MYDIR DANIEL DGFILE
PROG_A
E)ONNA
ANDY
CHRIS
JEREMY

Figure 4-5. Path from USERS Directory

LIF File Names A LIFfile name can be up to 10 characterslong and is case dependant. For example
thefile names "Filel", "FILEL", "filel" and "FiLel" represent different files. In
IBASICY, LIF file names may contain any letter of the aphabet (upper and lower
case), the digits 0-9, and the underscore character (). Y ou can also usethe ASCII
characters: CHR$(160) - CHR$(254). Spaces areignored when used in afile
name. A LIF file namelonger than 10 characters generates an error.

NOTE InIBASIC revision A.06.00 and earlier, the LIF file name characters were limited
to letters of the alphabet (upper and lower case), the digits (0-9), the underscore
character, and the ASCII characters chr$(160) through chr$(254).

1 Later versions of HP Series 200/300 BASIC and RMB-UX allow virtually any character to appear inaLIF file
name. IBASIC usesthe morerestrictive character set described above.

Mass Storage Concepts 4-5

DOS File Names

Volume Specifier

4-6 Mass Storage Concepts

A DOS file name can be up to 8 characters long with an optional extension name of
up to 3 characters. A period "." separates the file name from the extension. For
example:

prog_ 1.dvm

filename :I_ —I_—extengion

DOS file names are case independent. Although the name characters are stored as
upper case ASCII inthe DOS directory, the file may be referenced without regard
to case. For examplethe file names"Filel", "FILE1", "filel" and "FiLel" all
represent the same DOS file "FILE1". DOS file names may contain any letter of the
alphabet, the digits 0 - 9, and these characters:

1#3%()-"_{}~

Spaces are ignored when used in afile name or extension. If you enter aDOSfile
name longer than 8 characters, it is truncated to 8 characters and no error is given.
Similarly, if the extension name is longer than 3 characters, it istruncated to 3
characters and no error is given. If the name has more than one period, the first
period is retained and separates the name from the extension. The extension name
isthen truncated at or before the second period and any remaining characters are
ignored. For example "FILE1.AB.CDE" becomes "FILE1.AB".

The Volume Specifier directs a mass storage command to a particular volume on
the appropriate disk drive. The following shows atypical Volume Specifier.

",700,0,0"

L Volume 1D

Unit Number
GPIB Address

The GPIB Address isthe GPIB address of the disk drives. Thefirst digit
(left-most) specifies the GPIB interface (typically 7). Thelast two digits specify the
GPIB address setting of the disk drives. In the above example, theinterface
addressis 7 and the disk drive address is 00, resulting in acombined address of 700.
For the ramainder of this chapter the disk drive addressis assumed to be 00.

The Unit Number specifieswhich disk driveto access. For disk drives with GPIB
address 00 through 07, unit 0 is the hard disk drive and unit 1 is the flexible disk
drive. For disk drives with GPIB address 08 or 09 the GPIB device addressis set to
00 and the unit numbers are reversed; unit O istheflexible disk drive and unit 1 is
the hard disk drive. In the above example, the hard disk drive will be accessed. If
you do not have a hard disk, the flexible disk is always volume O.

NOTE

Specifying a Default
Directory/Volume

NOTE

The Volume ID specifies which volumeto access (for hard disk only). If you have
only 1 volume on the hard disk, you do not need to specify avolume ID. However,
if the hard disk contains multiple volumes, you must specify avolume ID whenever
you access the hard disk. Omitting the volume ID will direct the command to
volume 0.

Volumes on the hard disk are numbered consecutively from 0. For example, if the
hard disk is partitioned into four volumes, the volume IDs are 0, 1, 2, and 3.

The following command examples show how to accessfilesin both LIF and DOS
formats. Studying these exampleswill help to clarify the various volume, directory,
and file specifiers and the differences between using DOS or LIF format. Y ou will
learn more about these individual commands later in this chapter.

When using mass storage commands, you can specify the directory path (DOS
format only) and volumein each command. Y ou can also specify default values
using the MASS STORAGE IS command (or its abbreviation MSI). After
specifying a default directory/volume, all mass storage operations that do not
specify a source or destination with either adirectory path or a volume specifier will
use the default directory/volume. For example, to set the default volume to volume
1 of the hard disk, execute:

MASS STORAGE IS ",700,0,1"

or:

MsI ":,700,0,1"
If the volume is DOS format, you can also specify the current working directory:
MSI "\PROGRAMS\VOLTMET:,700,0,1"

or:

MSI "\PROGRAMS\VOLTMET"
If the default volumeis already 700,0,1

After re-booting the mainframe (cycling power or DIAG:BOQT), the default MSI
is set to the mass storage device where an autostart program was found (see
Autostarting Programs, | ater in this chapter). If no autostart program was found, the
default MSI isset to the root directory (DOS only) on the last valid mass storage
volume found during the power-on search sequence (search order = flexible disk,
RAM Volume 1, second, and volume O of the hard disk last).

The following examples use the CAT command to show how to access volumes,
directories, and filesin both LIF and DOS formats with and without the use of the
MSI command. The CAT command simply liststhe directories or files on amass
storage device (you'll learn more about CAT in the next section). Studying these
examples will help to clarify the various volume, directory, and file specifiers and
the differences between using DOS or LIF format.

Mass Storage Concepts 4-7

LIF Examples CAT ",700,0,0"
Catalogs val. 0 of hard disk

or:

MSI ":,700,0,0"

Sets default drive/volume to hard disk, volume 0
CAT

Catalogs default drive/volume
CAT ",700,1"

Catalogs flexible disk

or:

MSI *:,700,1"

Sets default drive to flexible disk (flexible disks can only have 1
volume)

CAT
Catalogs default drive

DOS Examples CAT "\PROGRAMS\VOLTMET:,700,0,1"
Catalogsfiles in Programs\Voltmet directory on volume 1 of hard
disk
MSI "\PROGRAMS\VOLTMET:,700,0,1"

Sets current directory path to Programs\Voltmet. Sets default
drive/volumeto hard disk, volume 1.

CAT
Catalogs current directory on default drive and volume

MSI "\:;,700,0,1"
Returns current directory path to root. Sets default drive/volume
to hard disk, volume 1.

If you want to specify afilethat is not in the current working directory or on the
default drive/volume, just specify the volume/directory in any of the mass storage
commands. For example, if MSI is set to the hard disk and you want to catal og the
flexible disk, execute:

CAT ".,700,1"

4-8 Mass Storage Concepts

Managing Files This section describes how to manage files (SAVE, GET, COPY etc.) in both the
LIF and DOSfile systems.

Creating Directories You can create subdirectories on a DOS formatted disk or RAM volume using the
CREATE DIR command. For example, to create asubdirectory named
PROGRAMS directly below the root on volume 1 of the hard disk, execute:

CREATE DIR "\PROGRAMS:,700,0,1"

After creating a subdirectory, you can use the same command to create
subdirectories below it. For example, to create a subdirectory named VOLTMET
under the PROGRAMS directory, execute:

CREATE DIR "\PROGRAMS\VOLTMET:,700,0,1"

Cataloging Files You can usethe CAT command to determine the contents of a mass storage
volume. The CAT command returns the contents of a mass storage volume (LIF
format) or volume/directory (DOS format) to the PRINTER IS device (unless
otherwise specified in the CAT command).

LIF Examples CAT ":,700,0,0"
Catalogs hard disk volume 0
CAT ":,700,1"
Catalogs flexible disk
CAT "MEMORY,0,0"

Catalogs RAM Volume O (the term MEMORY is optional, CAT
":,0,0" can also be used)

DOS Examples CAT "\PROGRAMS\VOLTMET:,700,0,1"
Catalogs PROGRAMSVVOLTMET directory on hard disk volume
1

CAT "\PROGRAMS\VOLTMET:,700,1"

Catalogs PROGRAMS\VOLTMET directory on flexible disk
CAT "\PROGRAMS\VOLTMET:MEMORY,0,1"

Catalogs PROGRAMS\VOLTMET directory on RAM Volume 1

Mass Storage Concepts 4-9

Saving Programs

LIF Examples

DOS Examples

4-10 Mass Storage Concepts

Y ou can write aprogram to a mass storage device using the SAVE command. The
SAVE command creates an ASCII file (LIF) or DOS/HP-UX file (DOS) (thesefile
types are discussed later in this chapter) and copies program lines into that file.

The following examples show how to save the program "TEST" to the various mass
storage devices.

MsI ":,700,0,0"

Sets default drive/volume to hard disk, volume O
SAVE "TEST"

SAVEs the file on the default drive/volume
SAVE "TEST:,700,0,0"

SAVEsthe file on hard disk, volume 0
SAVE "TEST:,700,1"

SAVEsthe file on flexible disk
SAVE "TEST:MEMORY,0,0"

SAVEsthe file to RAM Volume 0

SAVE "\PROGRAMS\VOLTMET\TEST:,700,0,1"

SAVES TEST program under PROGRAMSVOLTMET directories
on volume 1 of hard disk

MSI "\PROGRAMS\VOLTMET:,700,0,1"

Sets current directory path to PROGRAMS\VOLTMET. Sets
default drive/volume to hard disk, volume 1

SAVE "TEST"

SAVESs programto current directory path on the default drive and
volume

SAVE "\PROGRAMS\VOLTMET\TEST:,700,1"

SAVESs TEST program under PROGRAMSVOLTMET directories
on flexible disk

SAVE "\PROGRAMS\VOLTMET\TEST:MEMORY,0,1"

SAVESs TEST program under PROGRAMSVOLTMET directories
on RAM Volume 1

Re-Saving Programs

LIF Examples

DOS Examples

After you have created a program file (with the SAVE command), you can use
RE-SAVE whenever you need to write the program back to thefile. Thisallows
you to edit or update an existing program and then easily replace the program in the
samefile. (If thefile doesnot already exist, RE-SAVE behaveslike the SAVE
command and creates the file for the program.) The following examples show how
to RE-SAVE the program "TEST" to the various mass storage devices.

MsI ":,700,0,0"

Sets default drive/volume to hard disk, volume O
RE-SAVE "TEST"

RE-SAVESs thefile on the default drive/volume
RE-SAVE "TEST:,700,0,0"

RE-SAVEsthefile on hard disk, volume 0
RE-SAVE "TEST:,700,1"

RE-SAVESsthefile on flexible disk
RE-SAVE "TEST:MEMORY,0,0"

RE-SAVEsthefile to RAM Volume O

RE-SAVE "\PROGRAMS\VOLTMET\TEST:,700,0,1"

RE-SAVES TEST program under PROGRAMS\VOLTMET
directories on volume 1 of hard disk

MSI "\PROGRAMS\VOLTMET:,700,0,1"

Sets current directory path to PROGRAMS\VOLTMET. Sets
default drive/volume to hard disk, volume 1

RE-SAVE "TEST"

RE-SAVESs programto current directory path on the default drive
and volume

RE-SAVE "\PROGRAMS\VOLTMET\TEST:,700,1"

RE-SAVEs TEST program under PROGRAMS\VOLTMET
directories on flexible disk

RE-SAVE "\PROGRAMS\VOLTMET\TEST:MEMORY,0,1"

RE-SAVES TEST program under PROGRAMS\VOLTMET
directories on RAM Volume 1

Mass Storage Concepts 4-11

Getting Programs

LIF Examples

DOS Examples

4-12 Mass Storage Concepts

In System Controller Mode, you can retrieve a program from either disk drive or
fromaRAM volume. In Talk/Listen Mode, you can retrieve a program from a Ram
Volume only.

The GET command retrieves a program or program segment from an ASCII or
HP-UX file and placesit in the IBASIC computer. When GET isfollowed by the
file name only (no line numbers used), it clears any existing program from the
IBASIC computer’s memory and retrieves the specified program. By adding line
numbersto the GET command, you can append program linesto an existing
program and/or run the program at aspecified line. Refer to Agilent Instrument
BASIC Programming Techniques manua for more information on appending and
running programs with GET.

The following examples show how to get the program "MY_PROG" from either
disk drive or aRAM volume.

MsI ":,700,0,0"
Sets default drive/volume to hard disk, volume O
GET "TEST"
GETsfile from the default drive/volume
GET "TEST:,700,0,0"
GETsfile from hard disk, volume O
GET "TEST:,700,1"
GETsfile fromflexible disk
GET "TEST:MEMORY,0,0"
GETsfile from RAM Volume O

GET "PROGRAMS\VOLTMET\TEST:,700,0,1"

GETs TEST program from PROGRAMSVOLTMET directories
on volume 1 of hard disk

MSI "\PROGRAMS\VOLTMET:,700,0,1"

Sets current directory path to PROGRAMSVOLTMET. Sets
default drive/volume to hard disk, volume 1

GET "TEST"

GETs program from current directory path on the default drive
and volume

GET "PROGRAMS\VOLTMET\TEST:,700,1"

GETs TEST program from PROGRAMSVOLTMET directories
on flexible disk

GET "PROGRAMS\VOLTMET\TEST:MEMORY,0,1"

GETs TEST program from PROGRAMSVOLTMET directories
on RAM Volume 1

Copying Files

LIF Examples

DOS Examples

Copying an Entire
Volume

CAUTION

Examples
(LIF and DOS)

The COPY command allows you to copy an individua file or an entire volume.
Any type of file can be copied. Y ou can copy afileto the same volumeor to a
different volume. When you copy afileto the same volume, the new file name
must be different from the existing file name (if it isin the same directory). You
can copy DOSfilesto LIF volumes and vice versa. Refer to "Copy to/from DOS
and LIF" later in this chapter for more information.

MSI ";,700,0,0"
Sets default drive/volume to hard disk, volume 0

COPY "TEST" to "TEST:,700,1"
COPYs file from the default drive/volume to flexible disk using
the samefile name

COPY "TEST:,700,1" to "PROG_1:,700,0,0"
COPYsfile fromflexible disk to hard disk volume O using a
different file name

MSI ":,700,0,0"
Sets default drive/volume to hard disk, volume O

COPY "TEST:MEMORY,0,0" to "PROG_1"

COPYs file from RAM Volume 0 to default mass storage volume
using different file name

COPY "\PROGRAMS\VOLTMET\TEST:,700,0,1" to "TEST:,700,1"

COPYs TEST file from PROGRAMS\VOLTMET directorieson
volume 1 of hard disk to flexible disk (if the flexible disk is
formatted in DOS, "TEST" goes to the current directory since no
path was specified)

MSI "\PROGRAMS\VOLTMET:,700,1"

Sets current directory path to PROGRAMSVOLTMET. Sets
default drive/volume to flexible disk

COPY "TEST" to "\PROGRAMS\VOLTMET:,700,0,1"

COPYsfile from current directory path on the default drive and
volume to \PROGRAMS\VOLTMET directories on hard disk
volume 1

COPY "\PROGRAMS\VOLTMET\TEST:MEMORY,0,1" to
"\DCVOLT\PROG1:,700,1"

COPYs TEST file from PROGRAMS\VOLTMET directorieson
RAM Volume 1 to file PROG1 on DCVOLT directory of flexible
disk

The COPY command also allows you to copy the entire contents of a mass storage
volume to another volume. 'Y ou cannot copy alarger volumeto asmaller volume.
Y ou can copy asmaller volumeto alarger volume, however the size of the larger
volume will be reduced to the size of the smaller volume. When you copy aLIF
volume to a DOS volume, the DOS volume will be converted to LIF and vice versa.

Copying avolume destroys all previous data on the destination volume.

COPY ":,700,1" to ";,700,0,2"
COPYs volume from flexible disk to hard disk volume 2

Mass Storage Concepts 4-13

Renaming Files

Using RENAME to Move
DOS Files/Directories

Purging Files

Purging DOS
Directories

4-14 Mass Storage Concepts

COPY ":MEMORY,0,1" to ":,700,0,2"
COPYs RAM Volume 1 to hard disk volume 2

The RENAME command allows you to change the name of afile without
disturbing thefile's contents. For example, to change the name of afile from
"CHTRY" to "CHTEST", use the following command:

RENAME "CHTRY" TO "CHTEST"

Y ou can aso use the RENAME command to change afile's location in DOS
directories and/or the DOS hierarchy. For example, the following command moves
thefile"TEST" from the"VOLTMET" directory (on the default volume) to the
higher level directory "PROGRAMS'":

RENAME "\PROGRAMS\VOLTMET\TEST" TO "\PROGRAMS\TEST"

Y ou can aso move a DOS directory to adifferent place in the DOS hierarchy. The
following command moves the directory MY DIR to the next higher level in the
DOS hierarchy:

RENAME "\USERS\DAVEWMYDIR" TO "\USERS\MYDIR"

By preceding the file name with a backslash or dlash in the "new name" part of the
command, you can move afileto theroot. The following command moves the file
"PROG_1" fromits present directory to theroot:

RENAME "\PROGRAMS\VOLTMET\PROG_1" TO "\PROG_1"

Y ou can erase afilewith the PURGE command. Purging afile deletes the directory
entry for the file and rel eases the space reserved for the file. For example, the
following command removes the file "CHTRY" from the current default volume:

PURGE "CHTRY"

Y ou can use the PURGE command to remove DOS files and directories. The
following restrictions apply to PURGE on DOS directories:

* PURGE worksonly with closed files and directories. Y ou cannot purge a
file currently open with an ASSIGN or adirectory which isthe current
working directory of any DOS disk.

» A directory must be empty (must not contain any files or directories) before
it can be purged. This means that to purge a directory, you must first purge
all of itsfilesand lower-level directories.

Autostarting Programs

NOTE

CAUTION

Y ou can create an autostart program that will automatically be retrieved and RUN
by IBASIC whenever the mainframe is re-booted (power cycled or DIAG:BOOT
command executed). Y ou identify the file containing an autostart program by
naming the file"AUTOST". Y ou can save this program to the root directory of a
flexible disk, RAM Volume 1, or volume O of the hard disk. Whenever the system
isre-booted, IBASIC searches for an autostart file on the flexible disk first, RAM
volume 1 second, and volume O of the hard disk last. After the mainframe and disk
drive power-up sequences are completed, IBASIC runs the first autostart program it
found. Evenif you are autostarting from RAM volume 1 there will be a startup
delay while the system checksfor an autostart file on the floppy disk.

If you do not have ahard disk, the autostart search order becomes RAM volume 1
first and flexible disk second. If you do not have aflexible disk, the search order is
RAM volume 1 first and hard disk second.

After re-booting the mainframe, the default MSI is set to the mass storage device
where an autostart program was found. If no autostart program was found, the
default MSI isset to the root directory (DOS only) on the last valid mass storage
volume found during the power-on search sequence (search order is the same asfor
the autostart program).

Alwaystest a program before saving it as"AUTOST". It is possible to create a
corrupt autostart program (on RAM volume 1 or the hard disk) that may lock-up the
mainframe whenever it is re-booted.

If you have aflexible disk, you can recover from this situation by inserting a
flexible disk containing a functiona autostart file. The system will then find the
flexible disk autostart file before it finds the corrupt file.

If you do not have aflexible disk and the corrupt autostart fileisin RAM volume 1,
you can pressthe Reset I nstr key (front panel) or CTRL R (terminal) during the
power-on sequence while "Testing ROM" isbeing displayed. Pressing this key
aborts the normal power-on sequence and performs DIAG:BOOT:COLD instead.

Y ou can then PURGE or EDIT the corrupt autostart file.

If you do not have aflexible disk and the corrupt fileis on the hard disk, you can
select the IBASIC instrument during the power-on sequence and press Reset | nstr
(front panel) or CTRL R (terminal) while "IBASIC booting" or "IBASIC busy" is
being displayed. Pressing this key aborts the normal power-on sequence. Y ou can
then PURGE or EDIT the corrupt autostart file.

Mass Storage Concepts 4-15

Capturing a Display

Example: Autostart with
Display Capture

NOTE

4-16 Mass Storage Concepts

The DIAG:IBAS:DISP<device> command allows IBASIC to "capture" adisplay
following are-boot. In addition, the IBASIC instrument will automatically be
selected on the display device following are-boot. This command can be used
without an autostart program, but is particularly useful when used with an autostart
program. For example, immediately following re-boot, IBASIC can capture a
display and display user INPUT prompts or awarning such as"Warning: Power
Failure--reset all external equipment”.

The following example captures the built-in RS232 interface (BUILtin) and runs an
autostart program whenever the system is re-booted. Y ou can also capture a
terminal on aplug-in RS-232 card (1 - 7). Refer to the SCPl Command Reference
for more information on these parameters.

From the IBASIC instrument, execute the following command:

OUTPUT 80930;"DIAG:IBAS:DISP BUIL" Capture display after
re-boot

Now enter the following program:

10 DISP "This is an autostart test" Display message
20 END

To savethis program as an autostart program, execute one of these commands:

SAVE "AUTOST:,700,0,0" Save autostart file on hard disk
volume O

SAVE "AUTOST:,700,1" Save autostart file on flexible
disk

SAVE "AUTOST:,MEMORY, 1" Save autostart file on RAM
volume 1

Now, when the system is re-booted, IBASIC will capture the display, get and run
the AUTOST file, and display "This is an autostart test".

Initial PRINT commands from an autostart program may not be displayed if
IBASIC re-boots before the display system does. Thisismost likely to happen
when the autostart fileisin RAM Volume 1. Y ou can prevent this problem by
using ashort WAIT command (e.g., WAIT 5) asthefirst linein the autostart
program or by using the DISP command instead of PRINT.

Toreturn IBASIC to its normal mode of not capturing a display following re-boot,
execute this command from the IBASIC instrument:

OUTPUT 80930;"DIAG:IBAS:DISP NONE"

IBASIC File Types The IBASIC file system supports four different file types: ASCII, BDAT, DIR and
DOSHP-UX.

ASCII Files ASCII filesare stored on the disk as a series of variable length records. Each record
consists of a 16-bit word followed by the number of bytes designated in the length
word. If the length word contains an odd number, there is a one byte pad character
at the end of the record so that all records start on an even byte boundary. The end
of the fileis denoted by alength word containing -1. ASCI| files are created with
the command:

CREATE ASCII "<filename>",size

Where size isthe number of 256 byte blocks reserved for the file. The number of
recordsin the file can continue to grow until 256 x size bytes are used. Attempting
to write more than this to the file generates an IBASIC error 59 "End of file or
Buffer found".

BDAT Files BDAT filesare stored on the disk as a 256 byte system record followed by a series
of fixed length records. They are created with the command:

CREATE BDAT "<filename>",;number_of_records[,record_size]

Where number_of recordsisthe maximum number of records that can be stored in
thefileand record_sizeisthe size of each record. If therecord_sizeis not specified,
it defaults to 256 bytes.

Only thefirst 12 bytes of the BDAT system record are used. These 12 bytes
contain three 4 byte integers with the following information:

» Integer O: The 256 byte block containing the logical end of file.
» Integer 1: The offset of the End Of File in the above block.
» Integer 2: Maximum number of records as specified in CREATE BDAT.

Thefile directory contains the record length of each record as specified in the
CREATE BDAT command.

DIR Files DIRfilesare DOS directories or subdirectories. They are created with the
command:

CREATE DIR "<directory name>"
DIR files can only be created on DOS disks or DOS RAM volumes.

DOS/HP-UX Files DOS and HP-UX filesareidentical filetypes. DOS/HP-UX type files are created
with the command:

CREATE "<filename>" size

Where size isthe number of bytes needed for thefile. Therecord length for a
DOSHP-UX fileis 1 thus the number of bytesis the same as the number of 1 byte
records.

Mass Storage Concepts 4-17

NOTE

When executing the CAT command (CATaog) on aDOS/HP-UX fileon aDOS
disk, "DOS" isreturned as thefiletype. OnaLIF disk, "HP-UX" isreturned asthe
filetype. Thisis doneto be compatibleto some other Agilent products.

Using Wildcards

Enabling/Disabling
Wildcards

NOTE

File Names with
Extensions

4-18 Mass Storage Concepts

The wildcard characters allow you to use one command to perform operations on a
number of files or to "complete the name" of file names you may be unsure of.

The wildcard characters are an asterisk "*" and a question mark "?'. When
wildcards are enabled, the "*" represents any number of charactersin afile name.
For example, AB* matches file names such as AB, ABC, ABX, ABCD, etc. If the
"*" does not appear at the end of the name, any characters after the "*" are ignored.
For example, XY*Z matches XY, XYA, XYABC, etc. The"?" represents asingle
character in afile name. For example, A?B matches AAB, ABB, A2B, etc. If the
"?" appears at the end of the name asin AB?, it matches AB, ABC, ABX, etc.

The WILDCARDS DOS and WILDCARDS OFF commands enable and disable
wildcards, respectively. IBASIC defaultsto WILDCARDS OFF. The
"SCRATCH A" command resets IBASIC to WILDCARDS OFF. SCRATCH
does not change the wildcards setting. When wildcards are not enabled, including
"** or"?'inaDOSor aLIF file nameisillega and generates "ERROR 53
Improper file name'.

The term WILDCARDS DOS isnot limited to the DOSfile system. It appliesto
wildcard operationson aLIF disk aswell. The"DOS" term refersto the way
wildcards are expanded to match file names. The wildcard expansion closely
follows how the MS-DOS operating system treats wildcards.

Wildcards are only legal in the right most namein aDOS directory path (i.e.
\DIR1\A*.X). If wildcards are used in other than the right-most position (i.e.
\DIR*\ABC.X), an "ERROR 53 Improper file name" is generated.

When using a DOS filename extension, aperiod is used to separate the filename
from the extension. Sincethe period is not stored as part of the actual name, this
has some rather subtle implications when using wildcards. If awildcard is used that
has no period, it only matches files that do not have extension names. For example,
XY* matches XY A and XYB but not XY .A. Similarly, XY*.A matchesXYA.A,
XY.A, XYZ.A, and so on. AB*X.C matches AB.C, ABC.C ABCX.C, and so on.
Using "*" matches all fileswith no extension names and "*.*" matchesall files.

LIF filesdo not allow the period in afile name (and L1F does not have extensions)
sousing "*" or "*.*" on a LIF disk matches all files on the disk.

IBASIC Commands Wildcards operate in either the multiple name expansion mode or name completion
that use Wildcards mode. The mode used depends on the command being executed.

Multiple Name Expansion The CAT and PURGE commands operate in multiple name expansion mode. This
Mode meansthe wildcard name expands to as many names as can be matched. If the
operation attempted does not succeed on all filesfound, an "ERROR 293 Operation
failed on somefiles’ is generated.

LIF Examples WILDCARDS DOS
Enables wildcards
CAT "T*,700,0,0"
Catalogs all files starting with Ton volume O of hard disk
CAT "CH??:,700,0,0"
gz;’:(al ogs all 4-letter files starting with CH on volume O of hard
[
PURGE "VOLT*:,700,0,0"

PURGEs all files starting with the letters VOLT on volume O of
hard disk.

DOS Examples WILDCARDS DOS
Enables wildcards
CAT "\F*:,700,0,1"

Catalogs all subdirectories and files (without extensions) starting
with "F" on root directory of hard disk volume 1

CAT "\F*.*:,700,0,1"

Catalogs all subdirectories and files (with or without extensions)
starting with "F" on root directory of hard disk volume 1

CAT "\PROGRAMS*. TXT:,700,0,1"

Catalogs all files with TXT extension on PROGRAMS
subdirectory of hard disk volume 1

CAT "\PROGRAMS\AMPS.*;,700,0,1"

Catalogs all file named AMPS (with or without extensions) on
PROGRAMS subdirectory on hard disk volume 1

CAT "\PROGRAMS\CH??.*:,700,0,1"

Catalogs all 4-letter file names starting with CH (with any
extension) on PROGRAMS subdirectory on hard disk volume 1.

PURGE "\PROGRAMS\VOLTS.*:,700,0,1"

PURGEs all files named VOLTS (with any extension) in the
PROGRAMS directory on volume 1 of hard disk.

PURGE "\PROGRAMS*.CAP:,700,0,1"

PURGEs all files with CAP extension in the PROGRAMS
directory on volume 1 of hard disk.

PURGE "\PROGRAMS*.*:,700,0,1"

PURGEs all files in the PROGRAMS directory on volume 1 of
hard disk.

Name Completion Mode The ASSIGN, GET, MASS STORAGE IS, MSI, RENAME, and RE-SAVE
commands operate in File Name Completion mode. This means the wildcard name
can match asingle filename only. If it matches more than one file name, "ERROR
294 Wildcard matches> 1 item"” is generated.

Mass Storage Concepts 4-19

LIF Examples

DOS Examples

Commands that do not use
Wildcards

Wildcards and the COPY
Command

LIF Examples

4-20 Mass Storage Concepts

WILDCARDS DOS

Enables wildcards
GET "TE*"

GETsfile starting with TE from the default drive/volume
RENAME "CH*" TO "CHTEST"

Re-names file starting with CH to CHTEST on default drive
RE-SAVE "TE*"

RE-SAVEs the file on default drive/volume

WILDCARDS DOS
Enables wildcards
GET "\PROGRAMS\VOLTMET\TE*;,700,0,1"

GETsfile starting with TE* (no extension) from
PROGRAMSVOLTMET subdirectories on volume 1 of the hard
disk

MSI "\PROGRAMS\VO*:,700,0,1"

Sets default directories/drive to PROGRAMS directory starting
with VO on volume 1 of hard disk

RENAME "\PROGRAMS\VOLT\CH*" TO
"\PROGRAMS\VOLT\CHTEST"

Re-names file starting with CH to CHTEST in
PROGRAMSVOLT directories

RE-SAVE "\PROGRAMS\VOLTMET\TE*:,700,0,1"

RE-SAVEsfile starting with TE under PROGRAMSVOLTMET
directories on volume 1 of hard disk

The CREATE, INITIALIZE, and SAVE commands do not allow wildcards
("ERROR 292 Wildcards not alowed" is generated).

The COPY command operates in multiple name expansion mode on the first
parameter and name completion mode on the second. This allows you to copy many
filesin one operation. If either COPY parameter does not match any file, "ERROR
56 File nameis undefined” occurs. If the second parameter isSNULL (i.e. " or
":,0",...) itisassumed to refer to the current mass storage directory.

With wildcards enabled, the following situations are handled by COPY:

 If the source matches a single file name, the destination can match asingle
file name, a single directory name, or it must not exist (in which caseit is
created by the copy).

» If the source matches multiple file names, the destination must match a
single directory name.

WILDCARDS DOS
Enables wildcards
COPY "TE*;,700,0,0" to ":;,700,1"
COPYs file from hard disk volume O to flexible disk

DOS Examples

WILDCARDS DOS
Enables wildcards
COPY "\PROGRAMS\VOLTMET\TE*;,700,0,1" to ":;,700,1"

COPYsfile starting with TE from PROGRAMSVOLTMET
directories on volume 1 of hard disk to flexible disk (if the flexible
diskisformatted in DOS, "TEST" goes to current directory since
no path was specified)
COPY "\PROGRAMS\VOLTMET*.*:,700,1" to
"PROGRAMS\VOLTMET:,700,0,1"

COPYs all files from \PROGRAMS\VOLTMET directory on
flexible disk to \PROGRAMS\VOLTMET directory on hard disk
volume 1.

Behavior
Differences
between LIF and
DOS File Systems

ASCIl and BDAT Files
on DOS Disks

SAVE on DOS and LIF

Several file system operations in IBASIC behave differently depending on whether
thetarget disk isaLIF or aDOS disk. The purpose for thisisto simplify moving
files between IBASIC and either a DOS or HP Series 200/300 computer. This
allows IBASIC files written on DOS disks to be compatible with DOS software and
files written on LIF disks to be compatible with HP Series 200/300 BASIC software.

The DOS file system does not directly support ASCII and BDAT files. Thereisno
field in the DOS directory to save information indicating whether afileis ASCII,
BDAT or DOS/HP-UX so thisinformation must be stored in thefileitself. IBASIC
does this by creating a512 byte header on ASCII and BDAT files. Thisheader isa
256 byte LIF disk header followed by a 256 byte LIF directory containing 1 file
entry. The contents of the file begin immediately following the header. Any file
whose first 512 bytes are not recognized as a LIF header followed by aLIF
directory, is assumed to be aDOSHP-UX file.

The SAVE and RE-SAVE commands allow you to save aprogram in adisk file.
To dlow thisfileto be edited on an HP Series 200/300 BASIC or a DOS computer
(using a standard DOS text editor) IBASIC identifies the type of disk and file being
used and stores the information as follows:

* When saving to aDOS disk, IBASIC createsa DOS/HP-UX file and saves
the program as a series of ASCII strings each terminated by a
carriage-returrn/line-feed (CR/LF). Thisisthe standard DOS text format and
allows theresulting file to be edited by a DOS text editor.

* WhensavingtoaLIF disk, IBASIC creates an ASCII file and saves each
string with no terminator (the length word in each ASCII record eliminates
the need for astring terminator). Thisis the same format used by SAVE on
HP Series 200/300 BASIC computers so the resulting file can beretrieved
directly by one of these computers.

Mass Storage Concepts 4-21

RE-SAVE on DOS If thefilebeing RE-SAVED does not adready exist, RE-SAVE behaves exactly as
and LIF described previously with SAVE. If however, thefile aready exists, IBASIC
preserves the file type and stores the information as follows:

* When aprogram isre-saved to an ASCII fileonaLIF disk, ortoa
DOSHP-UX file on aDOS disk, there is no change since these are the
default file types on the respective disks.

* When aprogram isre-saved to an existing file, the original filetypeis
retained.

* When aprogram isre-saved to aDOS/HP-UX file on a LIF disk,
carriage-returns are removed automatically and only the line-feed portion of
the lineterminator is saved. This alowsthe program to be edited on an
HP-UX machine since HP-UX uses only the LF asthe line terminator.

COPY to/from DOS When copying files from aLIF to aDOS disk, file types are preserved by the copy.
and LIF AnASCII, BDAT and HP-UX file from a LIF disk copies directly to an ASCII,
BDAT, or DOSfile (respectively) on aDOS disk. There are, however, two things
you must remember to avoid problems:

* LIF and DOSfile names are not aways compatible
* COPY does not re-format text files (CR/LF <> LF)

When using wildcards and copying filesfrom DOS to LIF, you may have DOSfile
namesthat are not legal LIF names. When this happens, the files with legal names

are copied, fileswith illegal names are skipped, and ERROR 293 - Operation failed
on somefiles - is generated when the COPY finishes.

When copying DOS/HP-UX text files such as those generated by the SAVE or
RE-SAVE, be aware that atext file on a LIF disk that contains LF terminators still
contains only the LF terminators when copied to aDOS disk. Thereverseisalso
true. A text fileon aDOS disk containing CR/LF terminators still contains CR/LF
terminatorswhen it iscopied to aLIF disk. Thisisnot aproblem for the IBASIC
GET command since it handles either format regardless of the type of disk being
used. However, thisis aproblem for some HP Series 200/300 BASIC computers so
you need to be aware of the file type when exchanging programs on one of these
computers.

4-22 Mass Storage Concepts

DOS/HP-UX File
Extensibility

LIFfiles are stored in a contiguous group of sectorson the disk. This means that a
LIF file cannot expand beyond the size at which it was created. In addition, the
order of filesin the LIF directory isthe same as the order of the file data area on the
LIF disk.

The DOSfile system does not require that files be saved contiguously on the disk.
A DOS file may be split into several allocation units that can be scattered anywhere
on thedisk. This capability allows DOSfilesto be expanded aslong asthereisfree
space left on the DOS disk.

InIBASIC, ASCII and BDAT files on aDOS disk are created with afixed size that
cannot be expanded. However, file spacefor aDOS/HP-UX fileonaDOS disk is
not allocated when the file is created; it is allocated as the file iswritten. Thusthe
size specified in the CREATE command isignored and the DOS/HP-UX file can
expand up to the amount of available space on the DOS disk.

When using aLIF disk, you must specify adequate size when creating DOS/HP-UX
files since the file cannot be expanded later.

Mass Storage Concepts 4-23

In Case of Difficulty

Mass Storage Error Message

Cause

Error 52 Improper mass storage volume specifier.

The characters used for mass storage volume specified do not form avalid specifier. This
could be amissing colon, too many parameters, illegal characters, etc.

Error 53

Improper file name.

The file nameistoo long or has characters that are not allowed. (Can also occur when using
"*" or "?" in afile name when wildcards are not enabled or when awildcard was used in
other than the right-most position of afile name.) A LIF file name can be up to 10
characterslong and is case dependant. LIF file names may contain any letter of the
alphabet (upper and lower case), the digits 0-9, and the underscore character (_). You can
also use theinternational characters: CHR$(160) - CHR$(254). A DOS file name can be
up to 8 characters long with an optional extension name of up to 3 characters. DOSfile
names may contain any letter of the alphabet, the digits 0-9, the international characters
CHR$(160) - CHR$(254), and these characters:

1#$%(O)-~_{}-~

Error 54

Duplicate file name.

The specified file name aready exists. Itisillega to have two files with the same name on
one LIF volumeor in aDOS directory.

Error 55

Directory overflow.

Although there may be room on the media for the file, there is no room for another file
name. LIF Disksinitialized by Agilent Instrument BASIC have room for over 100 entries
inthe directory. Small RAM volumes alow fewer entries.

Error 56

File name is undefined.

The specified file name does not exist or awildcard operation did not match any file. Check
the contents of the disk witha CAT command.

Error 58

Improper file type.

Many mass storage operations are limited to certain file types.

Error 59

End of file or buffer found.

For files: No data left when reading afile, or no space left when writing afile. For buffers:
No data left for an ENTER, or no buffer space left for an OUTPUT or user RAM volume
too small.

Error 60

End of record found in random mode.

Attempt to ENTER or OUTPUT afield that is larger than a defined record.

Error 62

Protect code violation.

Failure to specify the protect code of a protected file, or attempting to protect afile of the
wrong type.

Error 64

Mass storage media overflow.

Thedisk is full. (Thereis not enough free space for the specified file size, or not enough
contiguous free space on aLIF disk.) Or you have specified a size for anonvolatile RAM
volume that is larger than the reserved memory.

Error 66

INITIALIZE failed.

Too many bad tracks found. The disk is defective, damaged, or dirty.

Error 67

I1legal mass storage parameter.

A mass storage command contains a parameter that is out of range, such as a negative
record number or an out of range number of records. Also occursif you did not reserve
enough memory space for a nonvolatile RAM volume.

Error 68

Syntax error occurred during GET.

One or more linesin the file could not be stored as valid program lines. (These lines will be
stored as commented lines.) Also occursif thefirst line in the file does not start with a
valid line number.

Error 72

Drive not found or bad address.

The mass storage unit specifier contains an improper device selector, the disk driveis still
powering-up, or no disk drive is connected.

Error 73

specifier.

Improper device type in mass storage volume

The volume specifier has the correct general form, but the characters used for a device type
are not recognized.

Error 76

Incorrect unit number in mass storage

volume specifier.

Uninitialized RAM volume or the volume specifier contains a unit number that does not
exist on the specified device.

Error 77 Operation not allowed on open file. The specified file is assigned to an 1/0 path name which has not been closed.

Error 78 Invalid mass storage volume label. Usually indicates that the media has not been initialized on a compatible system. Could also
be abad disk. Can also occur when switching disk formats (DOS, LIF).

Error 79 File open on target device. Attempt to copy an entire volume with afile open on the destination disk.

Error 80 Disk changed or not in drive. No disk in the drive or the drive door was opened while afile was assigned.

Error 81 Mass storage hardware failure. Also occurs when the disk is pinched and not turning. Try reinserting the disk.

Error 82 Mass storage volume not present.

Hardware problem or drive does not exist.

Error 83 Write protected.

Attempting to write to a write-protected disk. Thisincludes many operations such as
PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

Error 84 Record not found.

Error 85 Medianot initialized. Usually indicates that the media has not been initialized.

Error 87 Record address error. Usually indicates a problem with the media.

Error 88 Read dataerror. The mediais damaged, or a nonvolatile RAM Volume is corrupted.
Error 89 Checkread error. Error detected when reading data. The mediais probably damaged.

4-24 Mass Storage Concepts

Mass Storage Error Message

Cause

Error 90 Mass storage system error.

Usually a problem with the hardware or the media.

Error 93 Incorrect volume code in mass storage
volume specifier.

The volume specifier contains a volume number that does not exist on the specified device.

Error 183 Permission denied.

Attempt to PURGE or write to aread only file

Error 189 Too many open files.

Only afixed number of files can be open at onetime. Close some of the files.

Error 291 Too many matches.

Too many matches on wildcard operation.

Error 292 Wildcards not alowed.

Some mass storage commands such as CREATE, INITIALIZE, and SAVE do not alow
wildcards.

Error 293 Operation failed on somefiles.

The wildcard operation attempted does not succeed on dl files found. When using
wildcards and copying files from DOS to LIF, you may have DOS file names that are not
legd LIF names. When this happens, legal filesare copied, illegal files are skipped, and
this error is generated.

Error 294 Wildcard matches >1 item.

A wildcard operating in File Name Completion mode expanded to more than one file name.

Error 295 Improper destination type.

Multiple files must be copied to directory not file.

Error 296 Unable to overwritefile.

Unable to overwrite file during copy operation.

Error 460 Directory not empty.

Attempt to PURGE a directory containing files (you must PURGE files first)

Mass Storage Concepts 4-25

4-26 Mass Storage Concepts

Chapter 5 Contents

Using This Chapter 51

System Controller Mode Overview 5-1

Controalling InstrumentsGPI B Devices 5-3

Usingthe GPIB/IBASIC Interfaces
Communicatingwith Instruments
CommunicatingwithGPIBDevices

Controlling RS-232/422 Peripherals 5-12

Assigningthe RS-232/422 Interface
ConfiguringtheRS-232 Interface
CommunicatingviaRS-232 Interface
Serid InterffaceExamples o o

Storing/Retrieving Data 5-21

StepstoStoreData
Storing Datato IBASICMemory
Storing DatatoDisks.
Storing DatatoRAM Volumes

Enabling Interruptsand Events 5-28

Interruptsand EventsOverview
Enabling Instrument Interrupts L.
Enabling GPIB Devicelnterrupts
Enabling BranchingonEvents
Servicing Eventsand Interrupts

Synchronizing | nstrument/Device Oper ations 5-47

Controlling Instruments/GPIB Devices
Synchronizing Instrument/Device Operations
Passing Control to External Computer

Chapter 5

System Controller Mode Operation

Using This Chapter

NOTE

This chapter shows how to use the IBASIC computer in System Controller modeto :

+ Control instruments and external GPIB devices
» Control external RS-232/422 peripheras

» Store/retrieve datato disks and memory

» Enableinstrument/device interrupts

» Synchronize instrument/device operations

All example programs in this chapter are assumed to have been downloaded into the
IBASIC computer. See Chapter 2 - Creating and Editing Programs to create
programs from sources other than an HP 9000 Series 200/300 computer. See
Chapter 6 - Talk/Listen Mode Operation to create and download programs from an
HP 9000 Series 200/300 compulter.

System Controller
Mode Overview

Figure 5-1 shows typical functions using the IBASIC computer for System
Controller mode operation.

Controlling Instruments/GPIB Devices

The IBASIC computer communicates with internal instruments (the System
instrument, plug-in module instruments, and the IBASIC instrument) viathe
IBASIC interface. Use OUTPUT 809ss; to send commandsto aregister based or
message based instrument and ENTER 809ss; to return data from the instrument,
where 09 = primary address of the Agilent C-size mainframe at power-on and ss =
the instrument’s secondary address.

M essage based instruments can also be accessed by logical address using OUTPUT
16[XX]XX or ENTER 16[XX]XX where [XX]XX is0000-0255. Thefirst two
digits of [XX]XX are not required for logical addresses 00-99. This permits access
to message based devices at other than secondary addresses.

For System Controller mode only, IBASIC computer communicates with external
GPIB devices viathe GPIB interface. For interface select code 7, use OUTPUT
7ppssto send commands to a device and ENTER 7ppss to return data from the
device, where pp = device primary address and ss = secondary address.

System Controller Mode Operation 5-1

Use the GPIB interface commands ABORT, CLEAR, LOCAL, LOCAL
LOCKOUT, PASS CONTROL, REMOTE, SPOLL, and TRIGGER to control
GPIB device states viathe GPIB interface. Or, usethe IBASIC interface
commands ABORT, CLEAR, LOCAL, LOCAL LOCKOUT, REMOTE, SPOLL,
and TRIGGER to control instrument states viathe IBASIC interface.

Control Instruments/Devices
Enable Instrument/Device Interrupts

Synchronize Instrument/Device Operations

SYSTEM CONTROLLER MODE

C-size Mainframe

SYSTEM
INSTRUMENT

ﬁ%ggég g,;sg D MESSAGE BASED

INSTRUMENTS INSTRUMENTS

IBASIC

INSTRUMENT &
>
3,* RS-232
RS-232 PERIPHERAL
INTERFACES +
SERIAL -
PIB 9
DEVICES
L - / IBASIC
COMPUTER
RS—232/422
PERIPHERALS
$5-80 RIA
DISK OR TAPE SERIAL

E1324A
INTERFACEY +

Volumes
<files>
IBASIC
Memory
_ —
+INTERFACES MUST BE ASSIGNED T IBASIC E1400-18 FIGS-1
Store/Retrieve Data and Programs Control RS-232/422 Peripherals

Figure 5-1. System Controller Mode Operations

Controlling RS-232/422 Peripherals

Control externa RS-232 and RS-422 peripherals with the IBASIC computer via
the seria interfaces. Up to seven Agilent E1324A plug-in modules can beinstalled
in an Agilent C-size mainframe. When the RS-232/422 ports on an Agilent E1324A
plug-in module are assigned to IBASIC, use OUTPUT 21; and ENTER 21; to
control RS-232/ RS-422 peripherasviaAgilent E1324A module #1,..., OUTPUT
27; and ENTER 27; viaAgilent E1324A module #7.

5-2 System Controller Mode Operation

Storing/Retrieving Data

For System Controller mode, data returned from instruments, GPIB devices, or
RS-232/422 peripherals can be stored on external SS-80 disks or tapes, in RAM
volumes, or in IBASIC memory. For this discussion wewill be assuming a 9153
disk drive (one hard drive and one 3.5 inch floppy disk drive) at GPIB address 0.

UseMSI ":,700,0" to store datato the externa 9153 hard disk;

MSI ":,700,1" to store data to the 3.5 inch disk; or

MSI ":,0, <RAM Volume#>" to store datato nonvolatile or volatile RAM volumes.
Use OUTPUT @File and ENTER @File to access datafiles, where ASSIGN @File
TO "File" creates the path to thefile.

Enabling Interrupts and Events

Interrupts can be sent to the IBASIC computer from external GPIB devices or from
internal instruments when the appropriate interface is enabled with ENABLE INTR
<sc>, where <sc> = interface select code. The IBASIC computer can be
programmed to service interrupts and non-interrupt events with ON CY CLE, ON
ERROR, ON INTR, ON KEY, or ON TIMEOUT.

Synchronizing Instruments/GPIB device operations

The IBASIC computer can be used to control operations between instruments and
GPIB devices, to synchronize instrument/device operations with the IBASIC
computer, and to pass control from the IBASIC computer to an external computer.

Controlling
Instruments/GPIB
Devices

NOTE

Using the GPIB/IBASIC
Interfaces

In System Controller mode the IBASIC computer can communi cate with internal
instruments (the System instrument, plug-in modul e instruments, and the IBASIC
instrument) viathe IBASIC interface and with external GPIB devices viathe GPIB
interface. This section shows how to:

* Use GPIB/IBASIC interface commands
e Communicate with instruments viathe IBASIC interface
e Communicate with GPIB devices viathe GPIB interface

Y ou can aso use the READIO and WRITEIO commands which allow for more
flexibility in controlling instruments/devices with the IBASIC computer. Seethe
READIO and WRITEIO commandsin Chapter 7 - IBASC Command Reference
for information on these commands.

The IBASIC computer uses a GPIB (General Purpose Interface Bus) interface to
communicate with external GPIB devices, IBASIC interfaces (select codes 8 and
16) to communicate with interna instruments, and serial interfaces to communicate
with external RS-232/422 peripheras (see Figure 5-1).

System Controller Mode Operation 5-3

NOTE This discussion shows how to use the GPIB and IBASIC interfaces. See
Controlling RS-232/422 Peripheralsin this chapter for information on using the
serid interfaces.

GPIB/IBASIC Interface Although the OUTPUT and ENTER statements are used to communicate with
Capabilities instruments and devices, GPIB and IBASIC interface commands, such as CLEAR
and TRIGGER, can be used to control instrument or GPIB device states for actions
such as setting instruments or devices to a known state, sending Trigger messages
to the instruments or devices, etc.

GPIB Interface Commands

A standard GPIB interface connects the IBASIC computer to external GPIB devices
viathe GPIB port on the Agilent C-size mainframe controller. (If you are not
familiar with GPIB, see Tutorial Description of the General Purpose Interface Bus
for an introduction to the GPIB interface.) IBASIC supports all GPIB interface
(bus) messages except Parale Poll (PPOLL, PPOLL CONFIGURE, and PPOLL
UNCONFIGURE) and SEND.

Communicate with Devices via GpIB Interface Communicate with Instruments via IBASIC Interface
OUTPUT 7ppss; and ENTER 7ppss; OUTPUT 809ss; and ENTER 809ss;
ABORT, CLEAR, LOCAL, LOCAL ABORT, CLEAR, LOCAL, LOCAL
LOCKQOUT, PASS CONTROL, LOCKOUT, REMOTE, SPOLL,
REMOTE, SPOLL, TRIGGER TRIGGER
\ SYSTEM CONTROLLER MODE

C-size Mainframe

SYSTEM IBASIC Interfaces to
INSTRUMENT Internal Instruments

REGISTER or
MESSAGE BASED
INSTRUMENTS MESSAGE
BASED
— INSTRUMENTS

IBASIC
INSTRUMENT

GPIB
DEVICES GPIB

Communicate with Message Based
Instruments at Other Than
Secondary Addresses:

OUTPUT 16[xx]xx; ENTER 16[xx]xx;

CLEAR 16[xx]xx; TRIGGER 16[xx]|xx;
LOCAL 16[xx]xx; SPOOL 16[xx]xx

Ve L1

GPIB IBASIC

COMPUTER

E1400-IB FIG5—-2

Figure 5-2. Controlling Instruments/GPIB Devices
IBASIC Interface Commands

The IBASIC interface connects the IBASIC computer to internal instruments in the
Agilent C-size mainframe. The IBASIC interfaceis very similar to the GPIB

5-4 System Controller Mode Operation

interface as supported by IBASIC, except PASS CONTROL is not used by the
IBASIC interface.

The IBASIC Sdlect Code 8 interfaceis NOT aphysical interface and does not have
exact equivaentsfor the ATN, IFC, REN, EOI, and SRQ lines of the GPIB
interface. The IBASIC Sdlect Code 8 interface is designed to act very much the
same as the GPIB interface, where applicable.

The Select Code 16 interface uses similar commands but with differing results (see
summary on next page).

GPIB/IBASIC Interface Command Comparisons

The following table summarizes the interface commands used for the GPIB and
IBASIC interface, assuming an interface select code of 7 for the GPIB interface. In
thetable, pp = the external GPIB device primary address, and ss = the internal
instrument or GPIB device secondary address. See Chapter 7 - IBASC Command
Reference in this manual for further information on the interface commands.

NOTE Specific actionsin response to an interface command may be different for each
instrument/device. Seethe appropriate Agilent 75000 Plug-In Module User’s
Manual for information on instrument actions. See the appropriate user manual for
information on GPIB device actions.

System Controller Mode Operation 5-5

Summary of GPIB/IBASIC Interface Commands

Command | GPIB Interface Actions IBASIC Interface Select IBASIC Interface Select
Code 8 Actions Code 16 Actions

ABORT ABORT 7 breaks GPIB interface | ABORT 8 sets interface to [/O operation not allowed
handshakes in progress REMOTE "REN" true.

CLEAR CLEAR 7 clearsdl GPIB CLEAR 8 clearsdl instruments. | CLEAR 16 clears all message
devices. CLEAR 7ppssclears CLEAR 809ss clears selected based instruments. CLEAR
selected GPIB device. instrument. 16[XX]XX clearsthe selected

message based instrument.

LOCAL LOCAL 7returnsall GPIB LOCAL 8returnsall instruments | LOCAL 16 sends Clear Lock to
devicesto LOCAL dtate. to LOCAL state. LOCAL 809ss | all message based instruments.
LOCAL 7ppss returns selected returns selected instrument to LOCAL 16/ XX]XX sends Clear
deviceto LOCAL state. LOCAL | LOCAL state. LOCAL L ock to the selected message
LOCKOUT is cancelled on LOCKOUT is cancelled on based instrument.

LOCAL 7. LOCAL 8.

LOCAL LOCAL LOCKOUT 7 prevents | LOCAL LOCKOUT 8 prevents | 1/O operation not allowed.

LOCKOUT | GPIB devicesset to REMOTE instruments set to REMOTE
state from being operated from state from being operated in
thefront panel. LOCAL mode.

PASS PASS CONTROL 7pp passes PASS CONTROL does NOT PASS CONTROL does NOT

CONTROL | Active Controller function to apply to thisinterface. apply to thisinterface.
external computer.

REMOTE | REMOTE 7 sets GPIB REN line | REMOTE 8 sets "REN" true. REMOTE 16 is not dlowed.
true. REMOTE 7ppss sets REMOTE 809ss sets the selected | REMOTE 16[XX]XX sends Set
selected device to REMOTE instrument to REMOTE state. Lock to the selected message
state. based instrument.

SPOLL SPOLL (7ppss) performsa Serial | SPOLL (809ss) performsa Serial | SPOLL (16] XX]XX) performs a
Poll of selected GPIB device. Poll of selected instrument. Seria Poll of the selected

message based instrument.

TRIGGER | TRIGGER 7 sends Trigger TRIGGER 8 sends Trigger TRIGGER 16 is not allowed.

message to all addressed GPIB
devices. TRIGGER 7ppss sends
atrigger message to selected
GPIB device.

message to all addressed
instruments. TRIGGER 809ss
sends atrigger message to
selected instrument.

TRIGGER 16[XX]XX sendsa
word serial trigger message to
the selected message based
instrument.

Interface select code 7 for GPIB interface
Interface select code 8 and 16 for IBASIC

interface

pp = device primary address
ss = instrument/device secondary address

5-6 System Controller Mode Operation

Interface Command Four examplesfollow to show some ways the interface commands can be used to
Examples control instrument and GPIB device states. See Synchronizing Instruments/GPIB
Devicesin this chapter for examples using PASS CONTROL, SERIAL POLL, and
TRIGGER. See Chapter 7 - IBAS C Command Reference for additional details on
the interface commands.

Example: Aborting Interface ABORT 7

Activity (ABORT) For System Controller mode ONLY, ceases activity on GPIB
interface (select code 7)

Example: Clearing CLEAR 80914
Instrument/Device (CLEAR) Clearstheinternal instrument at secondary address 14
CLEAR 722

For System Controller mode only, clears the GPIB instrument at
address 722

CLEAR 1601

Sends a Word Serial Clear command to the message based device
at logical address 1.

Example: Enabling Local LOCAL 80914
State (LOCAL) Places an internal instrument at secondary address 14 in the
LOCAL state.
LOCAL 722

For System Controller mode only, places GPIB device at address
722 inthe LOCAL state.

Example: Setting Remote REMOTE 80901
State (REMOTE) Setsinstrument at secondary address 01 to REMOTE state
REMOTE 722
For System Controller mode only, sets GPIB device at address
722 to REMOTE state

System Controller Mode Operation 5-7

Communicating with For System Controller mode (and Talk/Listen mode), the IBASIC computer
Instruments communicates with internal instruments viathe IBASIC interface (interface select
code 8) (see Figure 5-2). Since the IBASIC computer can communicate with many
internal instruments, each instrument must have a unique address.

NOTE When System Controller mode is set, the IBASIC computer is the System
Controller and has exclusive control over internal instruments. Thus, for System
Controller mode, an external computer cannot access interna instruments via GPIB.

The address of an internal instrument for the IBASIC computer is 809ss, where ss =
the secondary address of the instrument. For the Agilent C-size mainframe, interna
instruments consist of the System instrument, plug-in module instruments, and the
IBASIC instrument. The address of the System instrument is 80900 and the address
of the IBASIC instrument is 80930. The default primary address of the Agilent
C-sizemainframe is 09. Neither the System instrument or the IBASIC instrument
are message based devices, so they cannot be accessed from the Select Code 16
interface. Select Code 16 can be used to access any message based instrument
using itslogica address.

Use OUTPUT 809ss; to send commands to instruments via the IBASIC interface
and use ENTER 809ss; to return data from instruments, where 8 = IBASIC
interface select code (fixed), 09 = the instrument’s primary address (programmable
from the System instrument), and ss = the instrument’s secondary address (00
through 30).

Communicating with To control a plug-in module instrument with the IBASIC computer, use OUTPUT
Module Instruments 809ss; and ENTER 809ss; statements where ss = the secondary address of the
instrument. An exampl e follows which uses the IBASIC computer to control an
Agilent E1410A DMM at address 80903 to make DC voltage measurements.

NOTE See the appropriate Plug-In Module User's Manual for typical programs to control
plug-in module instruments. To use the examples in those manuals for the IBASIC
computer, change the instrument address from 709ss to 809ss. Otherwise, the listed
programs can be used as shown for the IBASIC computer.

5-8 System Controller Mode Operation

Example: Making DCV Thisprogram makes a DC voltage measurement using an Agilent E1410A DMM at
Measurement with address 80903. The input to the DMM isviathe DMM rear panel terminals. The
Instrument measurement result is displayed on the terminal connected to the built-in RS232
interface. SeeFigure5-3for typical connections.

C-size Mainframe

E1410A
USER DEVICE [es ® 80903

T

IBASIC
COMPUTER

TERMINAL

T

BUILT-IN
RS-232 PORT

E£1400-1B FIC5-3
Figure 5-3. Example: Measure DCV with Instrument

5 IRE-SAVE "MEAS_DCV"

10 ASSIGN @E1410 to 80903 Assign DMM to the IBASIC
instrument

20 CLEAR @E1410 Clear DMM/interface

30 OUTPUT @E1410;*RST" Reset DMM

40 OUTPUT @E1410;"MEAS:VOLT:DC?" Make DCV measurement
and query result

50 ENTER @E1410;Volts Enter result
60 PRINT "E1410A Voltage = ";Volts Display results
70 END

A typical result is: E1410A Voltage = 1.254377

NOTE The same program could be used with Select Code 16 by changing line 10 to "10
ASSIGN @E1410 TO 1624" if the DMM is set to logical address 24.

System Controller Mode Operation 5-9

ronadam

Comunicating with the To control the System instrument with the IBASIC computer, use OUTPUT 80900
System Instrument and ENTER 80900 statements. An example to read the time of day follows. Seethe
Agilent 75000 Mainframe User’s Manual for System instrument operations.

This program uses the IBASIC computer to read and display the time of day using
the System instrument’s internal clock. The System instrument’s address is 80900.

5 IRE-SAVE "TIMECHEK"
10 OUTPUT 80900;"SYST:TIME?" Query time of day

20 ENTER 80900;H,M,S Enter time of day
30 PRINT H,M,S Display time of day
40 END

A typical return (4:15:30 PM.) is 16 15 30

Comunicating with the The IBASIC instrument is treated the same as any internal instrument in the
IBASIC Instrument mainframe. Use OUTPUT 80930; and ENTER 80930; statements to control the
IBASIC instrument from the IBASIC computer. A typical way to usethe IBASIC
instrument is to configure the RS-232/422 serial ports. See Controlling RS-232/422
Peripheralsin this chapter for details.

Although the IBASIC instrument is addressed as an interna instrument, the
IBASIC instrument isNOT a physical instrument and acts more like a
message-based device than a register-based device. In the Agilent C-size
mainframe, al plug-in module instruments (DVM, counters, etc.) are register-based
devices.

Therefore, if the*WAI command is used on the IBASIC instrument (as would be
the case for aregister-based instrument to wait for command completion), sending a
command to IBASIC will terminate very quickly. Thisoccurs since the IBASIC
computer begins executing the command (is running) separately from the IBASIC
instrument that issued the command.

To force the IBASIC instrument to wait for the command or program compl etion,
use the IBASIC instrument command PROG:WAIT? instead. The IBASIC
instrument will then wait for the IBASIC computer to enter the idle (STOPped) or
paused (PAUSe) state. See Chapter 8 - SCPI Command Reference for a description
of the PROG:WAIT? command.

Communicating with For System Controller mode only, the IBASIC computer can communicate with
GPIB Devices external GPIB devicesviathe GPIB interface. External GPIB devices can be
measurement devices (such as voltmeters or counters); acomputer whichis
compatible with GPIB (such as an HP 9000 Series 200/300 computer) aslong as the
computer is NOT the System Controller; or one or more Agilent C-size mainframes.

NOTE In System Controller mode, the Agilent E1406 is always the System Controller,
although it may be the Active Controller or Non-Active Controller.

5-10 System Controller Mode Operation

For System Controller mode, the IBASIC computer communicates with external
GPIB devices (and the internal disks) viathe GPIB interface. Use OUTPUT 7ppss,
to send commands to devices and ENTER 7ppss; to return data from devices, where
7 = the (assumed) GPIB interface select code, pp = the device's primary address,
and ss = the device's secondary address. Use the ABORT, CLEAR, TRIGGER, etc.
commands for other operations. An example follows.

NOTE See Synchronizing Instruments/Devices in this chapter for more examples of
controlling external GPIB devices using the IBASIC computer.

Example: Making DCV This program shows one way to usethe IBASIC computer to control an Agilent
Measurement with GPIB 3457A voltmeter at primary address 22 to make DC voltage measurements.
Device

5 [IRE-SAVE "ASGNPATH"

10 ASSIGN @Hp3457 to 722 Assign /O path to Agilent
3457A voltmeter

20 CLEAR @Hp3457 Clear Agilent 3457A voltmeter

30 OUTPUT @Hp3457;"DCV" Make Agilent 3457A voltage
measur ement

40 ENTER @Hp3457;A Enter Agilent 3457A
measur ement

50 PRINT "3457A Voltage = ";A Display Agilent 3457A
measur ement

60 END

A typical returnis: Agilent 3457A Voltage = 1.234674

System Controller Mode Operation 5-11

Controllin g In System Controller mode (and in Talk/Listen mode), the IBASIC computer can

RS-232/422 control external RS-232C or R$422 peripherals viaan RS-232 or RS-422 interface
Peripheral on an Agilent E1324A Data Communications module (interface select codes 21
eripherals through 27) (see Figure 5-4). Theinternal RS232 interface is used to communicate

with the controlling terminal. The stepsinvolved in controlling RS-232/422
peripherals are:

1. Assigntheinterfaceto IBASIC
2. Configuretheinterface for your operation
3. Communicate with peripherals viathe interface

Control IBASIC Via User Interface Using RS-232 Terminal

BUILT=IN RS—232
RS-232 TERMINAL
SERIAL
9
RS-232/422
£1324A PERIPHERALS

SERIAL
21-27

-]

MODEMS

Control RS232/422 Peripherals via E1324A Interfaces E1400-1B FIG5—4

Figure 5-4. Controlling RS-232/422 Peripherals

Assigning the For the IBASIC computer to communicate with RS-232/422 peripherals via an
RS-232/422 Interface Adilent E1324A plug-in serid interface, the interface must first be assigned to the
IBASIC compuiter.

Assigning the Built-In The default assignment for the built-in RS-232 interface is the User Interface
Interface (display system). Sincethereisno other means of controlling the IBASIC
compluter unlessatermina is assigned to a Agilent E1324A serid interface, this
serial interface should not be used to control other devices.

Assigning Agilent E1324A Youassign an Agilent E1324A seria interface to the IBASIC computer by setting
Interfaces the LADD switch on the moduleto 241, 242, ...,247. Up to seven Agilent E1324A

5-12 System Controller Mode Operation

NOTE

NOTE

Configuring the
RS-232 Interface

modules can be installed in an Agilent C-size mainframe. The following table
shows interface assignments by module number:

Interface Assignments

Module# LADD ...SER[N]* <SC>**
Built-in None 0 9
1 241 1 21
2 242 2 22
3 243 3 23
4 244 4 24
5 245 5 25
6 246 6 26
7 247 7 27
* =[n] valuein SY ST:COMM:SER][n]... commands

**

<sc> value in OUTPUT <sc>; and ENTER <sc>;

Seethe Agilent 75000 Installation and Getting Started Guide for an explanation of
Logical Addressing. Seethe Agilent 75000 Series B Agilent E1324A RS-232/422
Data Comm Module User's Manual for the LADD switch locations.

When the Agilent E1324A module(s) are assigned to the IBASIC computer, the
IBASIC instrument and the module(s) form a single instrument. Since the IBASIC
instrument has Logical Address (LADD) 240 (secondary address 30), to assign one
Agilent E1324A module (module#1) set the module Logical Addressto LADD
241. To assign two modules, set module #1 LADD to 241 and set module #2
LADD to 242. For three modules set LADDs 241, 242, 243, etc.

To enable the new Agilent E1324A port assignments, you must cycle mainframe
power after setting the LADD switches. The LADD settings must be sequential
starting with 241 (241, 242,...,247). Other LADD combinations, such as 241, 243,
... will result in one or more modules not being assigned to IBASIC.

After an RS-232 interface is assigned to IBASIC, you can configure theinterface
using SY ST:COMM:SER][n]... commands. See Chapter 8 - SCPI Command
Reference for SY ST:COMM:SER[n]... command information.

To configure the RS-232 interface, you must direct the configuration commands to
the IBASIC instrument using OUTPUT 80930;"SY ST:COMM:SER[n]:..."
commands, where [n] isthe interface number.

System Controller Mode Operation 5-13

Example: Configure RS-232 Thisexample configures the built-in RS-232 interface and stores the parameters.
Interface The parameters are stored in nonvolatile RAM (when using the built-in interface),
or an EEPROM on the plug-in interface (when using aplug-in interface). After
storing the parameters, the corresponding serial interface is set to these values on
power-up.

CAUTION Card parameters can be changes as often as desired but the EEPROM has a limited
number of write cycles (10,000) so the DIAG:COMM:SER[n]:STORE command
should not be used excessively when dealing with a plug-in interface.

5 [IRE-SAVE "SETPARAM"

10 Ib=80930.
IBASC instrument address
20 CLEAR b

Clear input/output buffers
30 OUTPUT Ib;"*CLS"
Clear status/error queue
70 OUTPUT Ib;"SYST:COMM:SER1:BAUD 9600"
Set 9600 baud rate
80 OUTPUT Ib;"SYST:COMM:SER1:BITS 8"
Set 8 data character bits
90 OUTPUT Ib;"SYST:COMM:SER1:PAR:CHECK OFF"
Disablereceive data parity checks
100 OUTPUT Ib;"SYST:COMM:SER1:PAR:TYPE NONE"

Incoming data must not include parity bit. No parity bit
transmitted.

110 OUTPUT Ib;"SYST:COMM:SER1:SBIT 1"
Set one stop hit
150 OUTPUT Ib;"SYST:COMM:SER1:TRAN:AUTO ON"
Links transmit pacing to receive pacing protocol
160 OUTPUT Ib;"SYST:COMM:SER1:PACE XON"
Enable XON/XOFF pacing
170 OUTPUT Ib;"SYST:COMM:SER1:PACE THR:STOP 6144"
Set XOFF threshold for 80 characters
180 OUTPUT Ib;"SYST:COMM:SER1:PACE THR:STAR 2048"
Set XON threshold for 20 characters
220 OUTPUT Ib;"SYST:COMM:SER1:CONT:DTR ON"
Set DTR control line ON
230 OUTPUT Ib;"SYST:COMM:SER1:CONT:RTS ON"
Set RTScontrol line ON
270 OUTPUT Ib;"DIAG:COMM:SER1:STORE"
Sorein nonvolatile RAM
280 END

5-14 System Controller Mode Operation

Communicating via
RS-232 Interface

Example: Control Printer via
Agilent E1324A Interface

When an RS-232 interfaceis assigned to IBASIC and the interface is configured for
the desired operation, the IBASIC computer can communicate with an externa
RS-232 peripheral using OUTPUT <sc>; and ENTER <sc>; statements. Where
<sc> = 9 for the built-in, or 21 through 27 for the plug-in interfaces.

This program controls an external RS-232 printer at select code 21 using the
RS-232 interface on Agilent E1324A module#1. Notethat the interface must have
been assigned to IBASIC by setting LADD 241 and cycling mainframe power. For
this example, the default settings for pacing and modem control lines are used. (See
Serial Interface Commands for default settings.)

5
10

20

30

40

50

60

70

80

90

100
110
120
130
140

IRE-SAVE "GET_CAT"

Ib=80930.
IBASC instrument address
CLEAR Ib
Clear input/output buffers
OUTPUT Ib;"*CLS"
Clear status/error queue
OUTPUT Ib;"SYST:COMM:SER1:BAUD 9600"
Set 9600 baud rate
OUTPUT Ib;"SYST:COMM:SER1:BITS 8"
Set 8 data character bits
OUTPUT Ib;"SYST:COMM:SER1:PAR:CHEC OFF"
Disable receive data parity checks
OUTPUT Ib;"SYST:COMM:SER1:PAR:TYPE NONE"

Incoming data must not include parity bit. No parity bit
transmitted.

OUTPUT Ib;"SYST:COMM:SER1:SBIT 1"

Set one stop bit

PRINTER IS 21

Direct data output to select code 21

PRINT "This line should appear on the printer at"
PRINT "select code 21 followed by a CATALOG"
PRINT "of the current disk”

CAT

END

System Controller Mode Operation 5-15

Serial Interface Thefollowing example programs demonstrate several ways to use an RS-232 seridl
Examples interface onan Agilent E1324A plug-in module. These examples assume that an
RS-232 terminal is attached to the RS-232 port.

This program demonstrates line oriented ENTER and OUTPUT operations on a

seria port.

10

20

30

40

50

60

70

80

90

100
120
130
140
150
160
170
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

5-16 System Controller Mode Operation

I RE-SAVE "LINE_IO"
DIM Line$[80]
Serial=921
!
I'ENTER and OUTPUT lines on Select Code 9.
|
I' With a Terminal connected to the built-in RS-232 port
I and that port assigned to IBASIC, this program
I demonstrates simple line-by-line 1/0 using the
I ENTER and OUTPUT statements.
I The program will remain in the ENTER statement appending
I typed characters to the Line$ string until a Line Feed
I character is received signifying an end-of-line. The
I Line Feed is not placed in the ENTERed string.
|
I A Carriage Return immediately followed by a Line Feed
I'will be treated as a Line Feed.
I Carriage Return = CNTL-M
I'Line Feed = CNTL-J
|
I As you type on the terminal you will not normally see
I'any characters being echoed.
|

ON ERROR GOTO Error_check ! Set up to trap errors

CLEAR Serial IClear the receive and transmit buffers
=1 I keep a count of lines

DISP "Entering lines from the terminal..."

LOOP

IOUTPUT prompt to terminal, then ENTER response
OUTPUT Serial;"Enter a line terminated with LF (CNTL-J):"
ENTER Serial;Line$

I Echo the response to the terminal

OUTPUT Serial USING "K,X,DDD,3(K)";"Line",I,": ™,Line$,""
I Continue to LOOP until an error or BREAK is detected
I=1+1 I increment the line count

END LOOP

Error_check:!

I Get the ENTER Status to determine what caused the error.
Err=READIO(Serial,4)

430
440
450
460
470
480
500
510
520
530
540
550
560
570
580

BEEP ! Signal an error

DISP ™ I Clear the display line

OUTPUT Serial;ERRM$!Print error message on terminal
|

I Look at each bit of the returned status to determine
I'which error condition(s) were detected.

OUTPUT Serial;"Error(s) detected on Select Code";Serial
IF BIT(Err,11) THEN OUTPUT Serial;" Buffer error"

IF BIT(Err,10) THEN OUTPUT Serial;" Device error"

IF BIT(Err,9) THEN OUTPUT Serial;" BREAK"

IF BIT(Err,8) THEN OUTPUT Serial;" Framing error"

IF BIT(Err,7) THEN OUTPUT Serial;" Parity error”

IF BIT(Err,6) THEN OUTPUT Serial;" Overrun error"
OUTPUT Serial;"End of Program"

END

This program demonstrates serial 1/0 with ENTER USING to get a single character
at atime from a seria port without requiring aLine Feed (or Carriage Return/ Line
Feed) after each character.

10 !'RE-SAVE "CHAR_|O"

20 DIM Char$[1]

30 Serial=921

40 !

50 !'ENTER single characters on Select Code 9.

70 !'With a Terminal connected to the built-in RS-232 port, and the
80 ! port assigned to IBASIC, this program demonstrates entering
90 ! character at a time with ENTER and USING.

120 ! The program will wait in the ENTER for a character to

130 ! be typed on the terminal. Then it will display the

140 ! character (if it is printable) and the numeric value

150 ! of the received character on the terminal.

170 ON ERROR GOTO Error_check ! Set up to trap errors

180 CLEAR Serial I Empty receive and transmit buffers
190 DISP "Entering characters from the terminal..."

200 OUTPUT Serial;"Type some characters on the terminal:"
210 LOOP

220 ENTER Serial USING "#,A";Char$

230 Code=NUM(Char$)

240 IF Code>31 AND Code(x127 THEN

250 OUTPUT Serial USING "K,X,DDD, X,3(K)";"Code
=",Code,"",Char$,""

260 ELSE

270 OUTPUT Serial USING "K,X,DDD, X,K";"Code
=",Code,"<non-printing>"

280 END IF

290 IContinue to LOOP until an error or BREAK is detected

300 END LOOP

System Controller Mode Operation 5-17

310 !

320 Error_check:!

330 ! Getthe ENTER Status to determine what caused the error.
340 Err=READIO(Serial,4)

350 BEEP ! Signal an error

360 DISP™ I Clear the display line

370 OUTPUT Seria,ERRM$!Print error message on terminal
380 !

390 ! Look at each bit of the returned status to determine
400 !which error condition(s) were detected.

420 OUTPUT Serial;"Error(s) detected on Select Code";Serial
430 IF BIT(Err,11) THEN OUTPUT Serial;" Buffer error”
440 IF BIT(Err,10) THEN OUTPUT Serial;" Device error"
450 IF BIT(Err,9) THEN OUTPUT Serial;" BREAK"

460 IF BIT(Err,8) THEN OUTPUT Serial;" Framing error"
470 IF BIT(Err,7) THEN OUTPUT Serial;" Parity error”
480 IF BIT(Err,6) THEN OUTPUT Serial;" Overrun error”
490 OUTPUT Serial;"End of Program™

500 END

This program demonstrates the use of READIO and WRITEIO on the serial
interface with ON CY CLE to alow non-blocking I/0. The program will not wait in
an I/O statement if no characters are available, but will return to the main program
and continue processing. Since the RS-232 interfacesin the Agilent E1406 is
buffered at the interrupt level by the operating system, with appropriate protocols
set up, This method will allow very flexible serial 1/0 with no loss of characters.

10 ! RE-SAVE "CYCLE_|O"

20 Serial=921

30 CLEAR Serial IEmpty the receive and transmit buffers
40 !

50 ! Demonstrate non-blocking serial I/0 using an ON CYCLE
60 ! subroutine to read and echo characters typed on the

70 !serial interface. The main loop of this program executes
80 !'repeatedly while every 0.1 seconds the serial interface

90 !is checked to see if any characters have been received.

100 !

110 OUTPUT Serial;"Typed characters will be echoed..."

120 Quit=0 I Initialize the Quit flag

130 ON CYCLE .1 GOSUB Serial_io !Set the ON CYCLE interval
140 LOOP I The main program loop

150 FOR I=1 TO 10000

160 DISP "n ="1,"n*n =";1"2

170 IF Quit THEN GOTO Quit_code
180 NEXT |

190 END LOOP

200 Quit_code:!

210 DISP™

5-18 System Controller Mode Operation

220 OUTPUT Serial;"End of Program”

230 STOP

240!

250 Serial_io:!

260 ! This subroutine is executed every ON CYCLE interval.
270 !t checks to see if any characters have been received
280 !and then echoes back to the serial interface. If a

290 ! carriage return is received, a line feed is echoed as
300 !aswell. If the Escape character is received, the Quit
310 !variable is set which tells the main program to terminate.
330 !

340 ! Read serial interface status and mask off all but the error bits
360 Status=BINAND(READIO(Serial,3),DVAL("FC0",16))
370 IF Status THEN

380 OUTPUT Serial;™

390 OUTPUT Serial;"Serial card error detected:"

400 OUTPUT Serial;" Status = ";DVAL$(Status,16);"h"
410 Quit=1 I Quit if an error occurred

420 RETURN

430 ENDIF

440 Cnum=READIO(Serial,1) I read a character

450 IF Cnum=-1 THEN RETURN !return if no characters
460 !

470 IF Cnum=27 THEN I quit if CNTL-Z is typed

480 Quit=1

490 OUTPUT Serial;™ I force a CR/LF output

500 RETURN

510 ENDIF

520 ! Echo the received character back to the terminal

530 !and loop until the WRITEIO of the character succeeds.

540 Write_loop:!

550
560
570
580
590
600
610
611
620
630

WRITEIO Serial,1;Cnum

IF (READIO(Serial,2)) THEN GOTO Write_loop

|

IF Cnum=13 THEN Do Line Feed after Carriage Return
Cnum=10
GOTO Write_loop

END IF

GOTO Serial_io I empty receive buffer before returning

RETURN
I

640 END

System Controller Mode Operation 5-19

Stori ng/Retrievi ng This section gives guidelinesto store and retrieve data collected from internal

Data

Data from

GPIB devices

instruments, GPIB devices, or RS-232/422 peripherasinto IBASIC memory or into
mass storage devices (external SS-80 disk or tape drives or RAM volumes).

See Chapter 4 - Managing IBAS C Files for information about IBASIC file types.
See the Agilent Instrument BAS C Programming Techniques Manual for
information about directing data flow and the Agilent Instrument BAS C Interfacing
Techniques Manual for information about using 1/0 paths.

For System Controller mode, the IBASIC computer can store data collected from
internal instruments, external GPIB devices, or external RS-232/422 peripheras
(see Figure 5-5). Data can be stored to and retrieved from the IBASIC memory or
mass storage devices (external SS-80 disk or tape drives or RAM volumes). Inthis
chapter we are assuming an external HP 9153 disk drive (hard disk plus floppy
disk) at GPIB addressO.

C-Size Mainframe Data from

instruments

GPIB IBASIC SERIAL RS-232/422

SS-80
DISK or TAPE MEMORY
0,0

L J 7ppss COMPUTER INTERFACE t J Peripherals

r
RAM H
Volumes
<files>
% IBASIC H
Memory
L

_ 1

E1400-IB FIG5-5

Store/Retrieve Data to Disks/Tapes Store/Retrieve Data to Memory
20 MByte hard disk: MSI ":,700,0” RAM Volumes: MSI ”:MEMORY,0”
3.5 inch disk: MSI":,700,1" IBASIC Memory: ASSIGN @FILE TQ "<file>”

ENTER @File; variable
OUTPUT @ File; variable

Figure 5-5. Storing/Retrieving Data

5-20 System Controller Mode Operation

Steps to Store Data There are seven main stepsto store datain data files on adisk drive, or in volatile
and nonvolatile RAM volumes on the RAM disk
(see Figure 5-6):

(1) Define afile/array inthe IBASIC computer
(2) Specify the default mass storage device

(3) Create adatafile on the mass storage device
(4) Assign an /O path name to the datafile

(5) Enter datainto IBASIC computer variables/arrays
(6) Writethe datainto the datafile
(7) Closethel/O path to the datafile

Data from Ggp|B devices,
RS—-232/422 peripherals,
and internal instruments

Em‘er Data into variables, arrays

(DDbefine Array/Variables z
& ¢——(®)Output Data to Data File
o
X

(—@Close 1/0 Path to Data File

@Specify MSI Device

@Creoie Data File ——

—(@Assign 1/0 Path to Data File

1

DISKS/RAM
VOLUMES

E1400-1B FIG5-86

Figure 5-6. Steps to Store Data

The following table summarizes typica commands to store data from instruments,
GPIB devices, or RS-232/422 peripheralsto adisk and to RAM volumes using
these seven steps. For IBASIC operation, ASCII, BDAT, and DOS/HP-UX files
can be created on mass storage devices. Note that only steps (1) and (5) are
required to store datain IBASIC memory.

System Controller Mode Operation 5-21

Storing Data to Disks/RAM Vols

Step Typica Commands
1 Define Computer variables REAL Volts Array(1:10)
2 Specify Mass Storage MSI ":,700,0" (20 MByte hard disk)

MSI ":,700,1" (3.5inch disk)
MSI ":,<unit> <volume>,"
MSI ":,0,0" - MSI ":,0,16" (RAM vols)

3 Create Data File CREATE <type> "file name", size?
4 Assign 1/O Path ASSIGN @Path_name TO "file_name"
5 Enter Data into Computer ENTER 809ss,variable (Instruments)

ENTER 7ppss,variable (GPIB devices)
ENTER 9; variable (RS-232)
ENTER <sc>; variable (Agilent E1324A)°
6 WriteDatato DataFile OUTPUT @Path_name; variable

7 Closel/O Pathto DataFile ASSIGN @Path=name TO*

a <type> can be ASCII, BDAT, or DOS/HP-UX
b <sc>=21for Agilent E1324A module#1,..., = 27 for module #7

Storing Data to IBASIC For System Controller mode, the IBASIC computer can store data from
Memory instruments, GPIB devices, and RS-232/422 peripheralsinto IBASIC memory. An
example followsto store data into IBASIC memory (variable space).

Example: Storing Datato Thisprogram uses an Agilent E1410A DMM instrument at address 80903 to make
IBASIC Memory 10 DC voltage measurements. The results are stored in IBASIC memory and are
then displayed on the terminal.

5 IRE-SAVE "STOR_MEM"

10 REAL Dcv_rgs(1:10) Create IBAS C computer array
for 10 readings

20 OUTPUT 80903;"CONF:DCV" Configure DMM for DC
voltage measurements

30 OUTPUT 80903;"TRIG:COUN 10" Set systemfor 10 triggers

40 OUTPUT 80903;"INIT" Trigger DMM, store the
readingsin DMM memory
50 OUTPUT 80903;"FETC?" Get readings from DMM
memory
60 ENTER 80903;Dcv_rgs(*) Enter readingsinto IBASIC
memory
70 PRINT USING "#,K,/";Dcv_rgs (*) Display readings on terminal
80 END
A typical returnis: 3.245637
3.245385 10 readings
3.244967

5-22 System Controller Mode Operation

Storing Data to Disks

Example: Storing Data to
Disk

NOTE

For System Controller mode, the IBASIC computer can store datafrom
instruments, GPIB devices, or RS-232/422 peripherasto the 20 MByte hard disk or
to the 3.5 inch disk. The disks are specified as the default mass storage device with
the MASS STORAGE IS (MS)) address for the disk. Typically, the MSI address for
the 20 MByte hard disk is":,700,0" and the address for the 3.5inch disk is
":,700,1".

This program shows away to store instrument data to a hard disk using the IBASIC
computer. As shown in Figure 5-7, an Agilent E1410A DMM at address 80903 (a)
makes 10 voltage measurements and (b) sends the results to the IBASIC computer
where they are stored in REAL array Dcv in IBASIC memory.

C—-Size Mainframe

USER E1410
DEVICE ‘ @ 80905]

IBASIC
COMPUTER

TERMINAL

T

ASCII FILE
"VOLTS”

SS—80 DISK
or TAPE T HP—IB

E£1400-1B FIG5-7

Figure 5-7. Storing Data to Disk

The results are then stored on the hard disk in ASCII datafile "Volts" (c) and are
retrieved from the data file and displayed on the terminal (d). Note that line 320
(close 1/0 path) is not necessarily required, since line 360 closesthe 1/0O path and
then reopens the path. The ASSIGN statement (line 170) is required to reset thefile
pointer back to the beginning of thefile.

This program can be used to save datato the 3.5 inch disk by changing line 70 to 70
MASS STORAGE 1S":,700,1". See Soring Data to RAM Volumes for information
on storing datato RAM volumes.

5 IRE-SAVE "STOR_HD"
10 ! Step 1: Define Computer File/Array
20 !
30 REAL Dcv (1:10)

Dimension REAL array in IBAS C memory
40 !

System Controller Mode Operation 5-23

50
70

80

90
100
120

130
140
150
160
170

180
190
210

220
230

240
250
260
280

290
300
320
330
340
360

370

380
390
400
410

A typical returnis:

5-24 System Controller Mode Operation

I Step 2: Specify MSI Device

MASS STORAGE IS ":,700,0"

Set 20 MByte hard disk as MS device
ON ERROR GOTO Already_Created

If ASCII file"Volts" is already created, do not attempt to create
datafile

!
I Step 3: Create Data File
CREATE ASCII "Volts",10

If not already created, create ASCII file"Volts' with length of 10
(256-byte) blocks
Already_Created: OFF ERROR Turn off ERROR message
|

I Step 4: Assign I/O Path to Data File
!
ASSIGN @File TO "Volts";FORMAT ON
Assign /O path to data file "Volts'. Use FORMAT ON since
ACII file is specified
I
I Step 5: Enter Data into Computer File

FORI1=1t010 Begin loop to make 10 DCV
readings

OUTPUT 80903;"MEAS:VOLT:DC?" Make 10 DCV readings

ENTER 80903; Dcv(l) Savereading in IBASC
computer array Dcv

NEXT | Increment count

!
I Step 6: Output Data to Data File

OUTPUT @File;Dcv(*) Send datato file"Volts' on

hard disk
!
I Step 7: Close 1/0O Path to Data File
ASSIGN @File to * Close I/0 path to file "Volts'
|
I Display data on terminal
ASSIGN @File TO "Volts";FORMAT ON
Reassign 1/0 path to file "Volts®

FORI1=1to010 Loop to transfer 10 readings to

terminal

ENTER @File; A(l) Transfer reading to terminal
PRINT USING "#,K,/";A(l) Display reading on terminal
NEXT I Increment count
END

3.245637

3.245385 10 readings

3.244967

Storing Data to RAM
Volumes

Example: Storing Data to
RAM Volume

After aRAM volume has been created on the RAM disk, you can store data from
instruments, GPIB devices, or RS-232/422 peripherasto datafileson RAM
volumes. Y ou can create nonvolatile or volatile RAM volume 1 and/or volétile
RAM volumes 0 and 2 through 16. See Chapter 4 - Managing IBASC Filesfor
information on creating and using RAM volumes.

This program shows one way to use the IBASIC computer to storeinstrument data
on (volatile) RAM volume 1 (RAM VOL1). Asshown in Figure 5-8, an Agilent
E1410A DMM at address 80903 (a) makes 10 DC voltage measurements and sends
the results to the IBASIC computer, which are stored in array Dcv in IBASIC
memory.

The results are then sent to the RAM disk and stored in DOS datafile "Volts 1" on
RAM VOL1 (b). The results are then retrieved from "Volts 1" and displayed on the
terminal (c). Notethat line 330 (close I/O path) is not necessarily required, since
line 370 automatically closes the 1/O path and then reopens the path.

C—Size Mainframe

/T o\
IBASIC
TERMINAL) COMPUTER
\— "/

E1400-1B FIG5-8

Figure 5-8. Storing Data to a RAM Volume

5 IRE-SAVE "STOR_RAM"
10 ! Step 1: Define Computer File/Array

20 !

30 REAL Dcv (1:10) Dimension REAL array in
IBAS C memory

40 !

50 I Step 2: Specify MSI Device

60 !

70 INITIALIZE "DOS:MEMORY,0,1",10Initialize RAM VOL 1 to DOS
format

80 MASS STORAGE IS ":"MEMORY,0,1"Set RAM VOL 1 asMS
device

System Controller Mode Operation 5-25

90 ON ERROR GOTO Already_Created
If DOSfile "Volts_1" is already created, do not attempt to create

datafile
100 !
110 ! Step 3: Create Data File
120 !

130 CREATE "Volts_1",1
If not already created, create DOSfile "Volts 1"
140 Already Created: OFF ERROR Turn off ERROR message
150 !
160 ! Step 4: Assign I/O Path to Data File
170 !
180 ASSIGN @File TO "Volts_1";FORMAT OFF

Assign I/O path to data file "Volts_1". Use FORMAT OFF since
DOSfileis specified.

190 !
200 ! Step 5: Enter Data into Computer File
210 !
220 FORI=1to010
Begin loop to make 10 DCV readings
230 OUTPUT 80903;"MEAS:VOLT:DC?"
Make 10 DCV readings
240 ENTER 80903; Dcv(l)
Savereading in IBAS C computer array Dcv

250 NEXTI Increment count
260 !

270 ! Step 6: Output Data to Data File

280 !

290 OUTPUT @File;Dcv(*)
Send datato file"Volts 1" on RAM VOL 1
300 !
310 ! Step 7: Close I/O Path to Data File
320 !
330 ASSIGN @File to *
Close 1/O path to "Volts 1"
350 ! Display data on terminal
360 !
370 ASSIGN @File TO "Volts_1";FORMAT OFF
Reassign I/O path to file "Volts 1"
380 FORI=1t010
Loop to transfer readingsto terminal

390 ENTER @File; A(l) Transfer reading to terminal
400 PRINT USING "#,K,/";A(l) Display reading on terminal
410 NEXTI Increment count

420 END

5-26 System Controller Mode Operation

Enabling Interrupts
and Events

Interrupts and Events
Overview

Interrupt and Event Types

This section gives guidelinesto:

» Enableinstrument interrupts

» Enable GPIB deviceinterrupts

» Enable program branching for events
» Serviceinterrupts and events

For System Controller mode, the IBASIC computer can sense and respond to
interrupts from instruments via the IBASIC interface or from external GPIB
devices viathe GPIB interface. (The IBASIC computer does not recognize
interrupts from the Serial interfaces.)

The IBASIC computer can also sense and respond to events input to the IBASIC
computer. Interrupts and events can be used to aert the IBASIC computer to
suspend its operation and to determine what serviceis required (see Figure 5-9).

Enable Instruments to Interrupt

C-Size Mainframe /
INSTRUMENTS

Enable GP|B Devices to Interrupt

No interrupt capability

©
%]
<
o

RS-232/422

PERIPHERIALS
| —

IBASIC
COMPUTER

\ ON CYCLE
ON ERROR
ON KEY
ON TIMEOUT

N

SERIAL

GPIB - -
DEVICES

SOFTKEYS

E1400-1B FIG5-9

Enable Branching on Events
Service Interrupt and Events

Figure 5-9. Enabling/Servicing Interrupts/Events

Events and interrupts can cause the IBASIC computer to branch to aservice
routine when the interrupt or event occurs. Thisis called event-initiated
branching. For IBASIC, the commands to enable event-initiated branching are the
ON CYCLE, ON ERROR, ON KEY, and ON TIMEOUT event commands and the
ON INTR interrupt command.

The following table summarizes the actions resulting from execution of the ON
CYCLE, ON INTR, ON ERROR, ON KEY, and ON TIMEOUT commands. For
event-initiated branching to occur, interrupts must be explicitly enabled, while
events are automatically enabled when the associated event command is executed.

System Controller Mode Operation 5-27

Command Type [nitiates Branching When:
ON CYCLE Event Specified number of seconds have el apsed
ON ERROR Event Trappable error occurs
ON INTR Interrupt IBASIC or GPIB interface generates interrupt
ON KEY Event Specified termina softkey is pressed
ON TIMEOUT Event [/O timeout on IBASIC, GPIB, or Seria interface

Conditions for
Event-Initiated Branches

Four conditions are required for an interrupt or an event to causethe IBASIC
computer program to take an event-initiated branch, as shown. In this manual, the
term "event-intiated branch” refersto acomputer branch taken asaresult of an
interrupt from the IBASIC or GPIB interface OR as aresult of a non-interrupt
event, such as an error message or interface timeout.

» Event-initiated branch is defined

* Interrupt or event is enabled

* Interrupt or event occurs and is logged
* Interrupt priority vs. system priority

Event-Initiated Branch is Defined

For interrupts and events, you must define an event-initiated branch with an
ON-event-branch statement and create a service routine. A serviceroutineis any
legal branch location for the type of branch specified (GOSUB, GOTO, CALL, or
RECOVER).

Interrupt or Event is Enabled

Before an event-initiated branch can be initiated by an interrupt from an IBASIC or
GPIB interface, the interface must be enabled to interrupt with an ENABLE INTR
<sc> command. Events are automatically enabled when an ON-event-branch
command (such as ON CY CLE or ON ERROR) is executed. For example:

ON INTR 8 GOSUB Chk_data

Branches to subroutine Chk_data when an interrupt occurs on
the IBAS C interface.

ON CYCLE 600 CALL Chime

Branches to subprogram Chime when the ON CYCLE event
occurs (every 10 minutes).

Interrupt or Event Occurs and is Logged

For event-initiated branching to occur, the interrupt or event must occur and be
logged by the IBASIC system. For example, if an undefined softkey is pressed but
the event has not been set up (with ON KEY) to cause an event-initiated branch,
there will be no action other than abeep to indicate an error.

Interrupt Priority is Greater than System Priority

The priority for the interrupt or event must be greater than the current system
priority as set with SY STEM PRIORITY . See Servicing Interrupts and Events for
details on priority.

5-28 System Controller Mode Operation

Enabling Instrument There arefour actions required to enable an instrument to generate an interrupt to
Interrupts theIBASIC computer viaan IBASIC interface (see Figure 5-10):

» Enable Instrument Standard Events
» Enable Instrument Service Request
» Enable Branching on IBASIC Interrupt
» EnableIBASIC Interface Interrupts

Enable Instrument Standard Events

OUTPUT 809ss;”*ESE <mask>"
OUTPUT 16[xx]xx; "+ESE <mask>” .
Enable Instrument Service Request
OUTPUT 809ss;"*SRE <mask>"
OUTPUT 16[xx]xx; "+SRE <mask>"

C-size Mainframe

\ INSTRUMENT

STD EVENT
ENABLE *ESE <mask

SEUCE R20 | e’ masio

/ Service Request

‘N‘TBE/QSF‘ECE ENABLE INTR 8; <mask>
ENABLE INTR 16; <mask>

ON INTR 8

IBASIC
COMPUTER

E1400-1B FIG5-10

Enable IBASIC Interface

ENABLE INTR 8;[<mask>]
ENABLE INTR 16;[<mask>] Enable Branching on IBASIC Interrupt

ON INTR 8 GOSUB/GOTO/RECOVER /CALL
ON INTR 16 GOSUB/GOTO/RECOVER/CALL

Figure 5-10. Enabling Instrument Interrupts

System Controller Mode Operation 5-29

Enabling Instrument
Standard Events

Thefirst action to enable instrument interruptsisto enable the Standard Events
which can set bit 5 (ESB) of the instrument’s Status Byte Register.

Figure 5-11 shows the minimum instrument status register set for an instrument in
the mainframe. The Standard Event Status Group consists of a Standard Event
register and a Standard Event Enable register.

Questionoble Doto/Signol Stotus Register

s Bit 36
tatus Byte ———
Re:;is(&i’
i
Output Queue Stotus Byte Register
X1 \ 0 0
- it 4
1.23£-04 Status Byte - 1 1
Prompt Register 2 2
#801010 | QUE QUE 92
q Loz
N MAV MAV 8°
—J
Standard Event Status Group ESB ESB
+ESR? {Stondord Event) 7 RQS X
I_ [*ESE (Stondord Event Enable) | OPR OPR
Operation Complete (OPC)| O | +SRE «ST18
Request Control {RQC)| 1 | \
Query Error {QYE) | 2
— — N
o Bit 5
Instrument Dependent {DDE)| 3 | é%:— Stots Byte
Execution Error {EXE)| 4 | S Register
Command Error {CME)| 5 |
User Request {URQ)| 6 |
Power On {PON) 7_
Operotion Stolus Register
E1400-18 FIB5-11

Program Running s it g
_ totus Byte o’
4 Register

Figure 5-11. Instrument Status Registers

To enable the condition(s) which will set the bit 5 in the Status Byte register, use
*ESE <mask>. You can check the conditions currently enabled with the * ESR?
command. For example:

*ESE 1
Enables Operation Complete (OPC) (bit 0)
*ESE 33

Enables the OPC bit and the Command Error (CME) (bit 5)
(relative bit weightsare 1 and 32).

The following table shows the Standard Event Register conditions for an instrument
which arerecognized by IBASIC. If one or more bits are enabled (with * ESE) and
the Standard Event(s) occurs, bit 5 of the Status Byte register is set.

Instrument Standard Event Status Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used User Command Execution Instrument | Query Error Request |OperationCor
by IBASIC Request Error Error Dependent (QYE) Control plete(OPC)
(URQ) (CME) (EXE) (DDE) (RQQC)
Value=128 | Value=64 | Value=32 | Value=16 | Vaue=8 Vaue=4 | Vaue=2 | Value=1

5-30 System Controller Mode Operation

Enabling Instrument The next step isto enable an Instrument Service Request (SRQ) which is generated
Service Request from the instrument’s Status Byte Register. Use* SRE <mask> to enable the
condition(s) which will generate an SRQ to the IBASIC interface. The Status Byte
register for an instrument follows.

Instrument Status Byte Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit2 | Bitl | Bit0
Operation Service Standard Message

Status Bit Request Event Bit Available Always 0

(OPR) (RQS) (ESB) (MAV)
Value=128 | Value=64 | Value=32 | Value=16 Value=8 | Value=4 | Value=2 | Value=l

The Questionable Data/Signa Status Register always sends a 0 to the Status Byte
Register (bit 3). Only the "Program Running” condition of the Operation Status
Register is reflected in the Status Byte Register (bit 7). When an IBASIC program
isrunning, bit 7 is set; when aprogram is not running, bit 7 is cleared (bit 7 is
read-destructive).

Bit 6 (SRQ) is used to generate the SRQ to the IBASIC interrupt. When bits 4, 5,
or 7 are enabled AND are set true, bit 6 is set true and generates an SRQ signal to
the IBASIC interface. Y ou can enable any combination of bits 4, 5, and 7 on the

Status Byte Register. For example:

OUTPUT 80903;"*SRE 16"

When bit 4 (MAV) of the instrument at secondary address 03
goestrue, bit 6 is set and an SRQ isgenerated to the IBASC
interface.

System Controller Mode Operation 5-31

Enabling Branching on When an instrument and an IBASIC interface are enabled to interrupt, the IBASIC
IBASIC Interrupt computer can be programmed to branch to a service routine when an interrupt is
received from the IBASIC interface.

The ON INTR 8, <priority> GOTO/GOSUB/RECOVER/CALL command defines
an event-initiated branch to be taken when an interrupt is received from the IBASIC
interface. The <priority> parameter sets the software priority for theinterrupt. (See
Software Priority in this chapter for information on software priority.) For
example:

ON INTR 8 GOSUB 500

Branches program to line 500 when an interrupt is received from
the IBASIC interface. Software priority is 1 (default)

ON INTR 8,3 CALL Service
Branches program to subprogram Serviceon IBASC interface
interrupt. Software priority is 3

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF
INTR. When an interrupt occurs on the IBASIC interface, animplicit DISABLE
INTR is performed for the interface. Another ENABLE INTR must be performed
to re-enable the interface.

Example: Enabling Thisexample shows away to interrupt the IBASIC computer after an Agilent
Instrument Interrupts E1410A DMM has taken 10 DC voltage measurements.

10 ! RE-SAVE "INTR8"
20 COM @E1410
30 ASSIGN @E1410 TO 80904.
40 CLEAR @E1410
Get DVM’s attention
50 OUTPUT @E1410;"*CLS;*RST"
Clear status and reset hardware
60 WAIT .2
Wait for instrument reset
70 OUTPUT @E1410;"SAMPLE:COUNT 10"
Set number of readings to take
80 OUTPUT @E1410;"*ESE 1;*SRE 32"
Enable interrupt on operation complete
90 ON INTR 8 CALL Service1410
Configure routine for interrupt
100 ENABLE INTR 8;2
Enable SRQ interrupts on Select Code 8
110 OUTPUT @E1410;"INIT;*OPC"
Initiate measurements and tell instrument to set OPC bit in ESE

5-32 System Controller Mode Operation

120!

130 ! Wait here for interrupts

140 ! to be serviced

150!

160 LOOP

170 END LOOP

180 END

190!

200 ! Service Routine for DVM

210!

220 SUB Service1410

230 COM @E1410
Have access to instrument address

240 REAL Volts(1:10)
Configure variable storage

250 OUTPUT @E1410;"FETCH?"
Request measur ement results

260 ENTER @E1410;Volts(*)
Enter results

270 Stats26=SPOLL(@E1410)
Clear "SRQ"

280 OUTPUT @E1410;"*ESR?"
Clear Sandard Event Satus Register

290 ENTER @E1410;Esr
Read status

300 FOR I=1TO 10

310 PRINT "Volts *I;" = ";Volts(l)

320 NEXTI

330 ENABLE INTR 8
Re-enable for next interrupt

340 OUTPUT @E1410;"INIT;*OPC"
Re-start measurement process

350 SUBEND

A typical returnis:

Volts 1= -1.052826
Volts 2 = -.8443604 10 Readings repeat until Basic Reset

Volts 10 = -.367774

System Controller Mode Operation 5-33

Enabling IBASIC Interface The IBASIC interface, when enabled, can signal the computer that an instrument
Interrupts interrupt has occurred. Although an instrument is enabled to send an SRQ to the
IBASIC interface, theinterface must also be enabled to relay the interrupt to the
IBASIC computer. Use ENABLE INTR 8;[<mask>] or ENABLE INTR
16;[<mask>]to enable the IBASIC interface to signal an interrupt to the IBASIC
computer. The register map for the IBASIC interface follows.

IBASIC Interface Registers for Select Codes 8 and 16

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
End-or-
Not Used Identify Not Used
(EOI)
Value= Value= Value= Value= Value= Vaue= | Value= | Vaue=
-32768 16384 8192 4096 2056 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Service Not Used
Not Used Request
(SRQ)
Value=128 | Value=64 | Value=32 | Value=16 | Value=8 Value=4 | Value=2 | Value=1

The IBASIC interfaces (select code 8 and 16) only recognize the SRQ (Service
Request) bit (bit 1, value = 2) and EOI (End-Or-Identify) bit (bit 11, value = 2048).
Thus, to enable an IBASIC interface to generate an interrupt to the IBASIC
computer the allowable values are:

ENABLE INTR 8;2

Enables SRQ interrupts only
ENABLE INTR 8;2048

Enables EOI interrupts only
ENABLE INTR 16;2050

Enables SRQ and EOI interrupts

Y ou can set an IBASIC interface timeout value with the ON TIMEOUT command.
With atimeout value, the computer can branch to a service routine when the
handshake response from an instrument takes longer than the timeout value. See
Using the ON TIMEOUT Event in this chapter for details.

5-34 System Controller Mode Operation

Enabling GPIB Device For System Controller mode ONLY, the IBASIC computer can detect and service
Interrupts interruptsfrom external GPIB devices viathe GPIB interface (see Figure 5-12).
There are three actions required to enable an interrupt from an external GPIB device
viathe GPIB interface:

» Enable GPIB Device Service Request
» Enable Branching on GPIB Interface | nterrupt
» Enable GPIB Interface Interrupts

Enable gpig Inferface
ENABLE INTR 7;[<mask>]

Enable Device Service Request
OUTPUT 7ppss;” <Interrupt mask>"

Size Mainframe

IBASIC
COMPUTER

GPIB
DEVICES

Service
Request
(SRQ)

E1400-1B FIG5-12

Enable Branching on GPIB Interrupt
ON INTR 7 GOSUB/GOTO/RECOVER/CALL

Figure 5-12. Enabling GPIB Device Interrupts

Enabling GPIB Device Most GPIB devices have a Status Byte Register (or equivalent) which can be
Service Request enabled to send an interrupt signal to the GPIB interface. See the device's user
manual for information on enabling the Status Byte register to generate an interrupt
signal to the GPIB interface.

Enabling Branching on When an GPIB device and the GPIB interface are enabled to interrupt, the IBASIC
GPIB Interrupt computer can be programmed to branch to a service routine when an interrupt is
received from the GPIB interface. The ON INTR <sc>,
<priority>GOTO/GOSUB/RECOVER/CALL command defines an event-initiated
branch to be taken when an interrupt is received from the GPIB interface.

The <priority> parameter setsthe software priority (from 1to 15) for theinterrupt.
See Software Priority in this chapter for information on software priorities. ON
INTR isdisabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

NOTE The software priority setting can affect the actions for ON INTR interrupts. See
Software Priority for details.

System Controller Mode Operation 5-35

For example:

ON INTR 7 GOSUB 500

Branches program to line 500 when an interrupt is received
fromthe GPIB interface (select code 7) (software priority 1)

ON INTR 7,3 CALL Service

Branches programto subprogram Service on GPIB interface
interrupt (select code 7) (software priority 3)

Enabling GPIB Interface The GPIB interface Service Request (SRQ), when enabled, generates an interrupt
Interrupts request to the IBASIC computer. As shown in Figure 5-13, there are two types of
interrupts: the servicerequest (SRQ) which originates at the GPIB device, and the
hardwareinterrupt which indicates a specific condition at the interface.

To enable an external GPIB device to interrupt the IBASIC computer, the GPIB
interface must be enabled with an ENABLE INTR <sc>;[<mask>] command. The
following table defines the events that can cause the GPIB interface to generate an
interrupt signal to the IBASIC computer.

Logical OR of the Two Siginals

COMPUTER
INTERFACE /
SRQ Interrupt — / Both types of interrupts are
from Device — == signalled to the computer in
the same manner.

Interrupt

from

Interface

Hardware

E1400-1B FIG5-13

Figure 5-13. GPIB Interface Interrupts

5-36 System Controller Mode Operation

GPIB Status Register 4 Interrupt Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Controller| Paralld Poll My Tak My Listen EOI Received SPAS Remote/ Talker/
Con- figuration Address Address Local Listener
Change Received Received Change Address
Change
Value=-32768 Value=16384 Value=8192 Value=4096 Value=2056 Value=1024 Value=512 Value=256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Hand- Unrecog- Secondary Clear Received Unrecog- SRQ Received | IFC* Received
Trigger Received shake Error nized Command While nized
Universal Addressed Addressed
Command Command
Value=128 Value=64 Value=32 Value=16 Value=8 Vaue=4 Value=2 Value=1

* Sincethe Agilent E1406 is always System Controller, this bit will never cause an interrupt

Example: Branching on
GPIB Interrupt

This program shows away to enable branching to a service routine on interrupt

from an Agilent 3456A DVM.

10 ! RE-SAVE "INTR7"

20 REAL Reading

30 ASSIGN @Hp3456 TO 722

40 CLEAR @Hp3456

50 OUTPUT @Hp3456;"'SM104T4"
Interrupt on measurement compl ete

60 ON INTR 7 GOSUB Get_reading
Configure for service branching

70 ENABLE INTR 7;2

80 TRIGGER @Hp3456

90!

100 ! Loop here and display count and results

110!

120 LOOP

130 DISP Count_,Reading

140 END LOOP

150 Get_reading:!

Assign address
Clear state of DVM

Enable SRQ interrupt
Sart measurement sequence

Routine to service interrupt

160 Stats=SPOLL(@Hp3456) Clear instrument SRQ
170 ENTER @Hp3456;Reading Read voltage

180 Count_=Count_+1 Increment counter
190 ENABLE INTR 7

Re-enableinterrupts on interface

200 TRIGGER @Hp3456 Restart measur ement
210 RETURN Return to calling program
220 END

System Controller Mode Operation 5-37

Enabling Branching Inaddition to recognizing and servicing interrupts from the GPIB or IBASIC
on Events interface, the IBASIC computer can be enabled to recognize and service events
when a predefined action occurs. With the ON-event-branch commands, the
IBASIC computer can be enabled to branch (event-initiated branching) to aline
label, line number, or subprogram when the event occurs.

Figure 5-14 shows the events and interrupts recognized by the IBASIC computer
which can initiate computer branching. See Chapter 7 - IBASC Command
Reference for additional information on the ON-event-branch commands. See
Enabling Instrument Interrupts or Enabling GPIB Device Interrupt s for
information on computer branching on interrupts.

Branch on Interrupt
(IBASIC) ON INTR 16 GOSUB/GOTO/RECOVER/CALL
(IBASIC) ON INTR 8 GOSUB/GOTO/RECOVER/CALL

(GPIB) ON INTR 7 GOSUB/GOTO/RECOVER /CALL

C-size Mainframe

\ INSTRUMENTS
IBASIC
INTERFACE

0
o
=
Z
z
(@]

16

IBASIC

ON INTR

RS—-232/422
PERIPHERIALS

IBASIC SERIAL
COMPUTER

\\ ON CYCLE
ON ERROR

ON INTR 7

GPIB
DEVICES

SOFTKEYS
ON KEY

AN

ON TIMEOUT

E1400-IB FIG5—14

Branch on Event
ON CYCLE <sec> GOSUB/GOTO/RECOVER/CALL
ON ERROR GOSUB/GOTO/RECOVER/CALL
ON KEY <key> GOSUB/GOTO/RECOVER/CALL
ON TIMEOUT <sc> <sec> GOSUB/GOTO/RECOVER/CALL

Figure 5-14. Interrupts/Events for Program Branching

The following table summarizes the actions resulting from execution of the ON
CYCLE, ON ERROR, ON KEY, and ON TIMEOUT commands. Recdl that for
event-initiated branching to occur, interrupts must be explicitly enabled, while
events are automatically enabled when the associated event command is executed.

Events Recognized by the IBASIC Computer

Event Command I nitiates Progrzam Branching When:

ON CYCLE <seconds> Specified number of seconds have el apsed

ON ERROR Trappable error occurs

ON KEY <key sdlector> Specified termina softkey is pressed

ON TIMEOUT <sc>,<seconds> [/0 timeout on IBASIC, GPIB, or Seria Interface

5-38 System Controller Mode Operation

ronadam

ronadam

Using the ON CYCLE Event

NOTE

Using the ON ERROR Event

Using the ON KEY Event

NOTE

ON CY CLE <seconds>, [<priority>] GOTO, GOSUB, RECOVER, or CALL
initiates an event-initiated branch each time the specified number of <seconds>
has elapsed. ON CY CLE is disabled by DISABLE and is deactivated by OFF
CYCLE. If the cycle timeis so short the computer cannot serviceit, the interrupt is
lost.

The software priority set can affect the actionsfor ON CY CLE events. See Software
Priority for details.

For example:

ON CYCLE 1 GOSUB One_sec
Transfers program execution to subroutine One_sec each second.
ON CYCLE 3600,3 CALL Chime

Transfers program execution to subprogram Chime once every
hour (priority = 3)

The ON ERROR GOTO, GOSUB, RECOVER, or CALL command defines and
enables an event-initiated branch which results from atrappable error. ON ERROR
has the highest priority (17) of any event-initiated branch and this priority cannot be
changed. ON ERROR can interrupt any event-initiated service routine. ON
ERROR is deactivated by OFF ERROR, but is not affected by DISABLE.

For example:

ON ERROR GOTO 1200

Transfers program execution to line 1200 when a trappable error
occurs

ON ERROR CALL Report

Transfers program execution to subprogram Report when a
trappable error occurs

The ON KEY <key selector> [LABEL <prompt>], [<priority>] GOTO, GOSUB,
RECOVER, or CALL command initiates an event-initiated branch when the
specified terminal softkey is pressed.

The valid range for the <key selector> parameter is 1-7. The LABEL of any key is
bound to the current ON KEY definition, so when a definition is changed or
restored the LABEL changes accordingly. ON KEY isdisabled by DISABLE,
deactivated by OFF KEY, and temporarily deactivated when the program is paused
or executing INPUT commands.

The software priority set can affect the actionsfor ON KEY events. See Software
Priority for details.

System Controller Mode Operation 5-39

For example:

ON KEY 1 GOTO 150

Transfers program execution to line 150 when softkey 1 is
pressed

ON KEY 5 LABEL "Chime",3 CALL Chime

Transfers program execution to subprogram Chime (priority 3)
when softkey 5 is pressed

Using the ON TIMEOUT The ON TIMEOUT < select code>, <seconds> GOTO, GOSUB, RECOVER, or
Event CALL command initiates an event-initiated branch when an /O timeout occurs on
the IBASIC, GPIB, or Serial interface.

NOTE The IBASIC computer does not recognize the ON INTR interrupt from the Serid
interfaces (select codes 9 and 21 - 27), but does recognize the ON TIMEOUT event
for the Seria interfaces.

Since thereisno default system timeout, if ON TIMEOUT is not in effect for the
interface an instrument, GPIB device, or RS-232/422 periphera can causethe
program to wait indefinitely.

When ON TIMEOUT isin effect, the specified branch occursif an INPUT or
OUTPUT isactive on the interface and the interface has not responded within the
number of <seconds> specified.

ON TIMEOUT has an effective software priority of 16 which cannot be changed.
Timeouts apply to ENTER and OUTPUT statements, and to PRINTER IS devices
when they are external. ON TIMEOUT is deactivated by OFF TIMEOUT.
DISABLE does not affect ON TIMEOUT.

For example:

ON TIMEOUT 8, 10 GOTO 770

Causesthe programto branch to line 770 if the IBASC interface
has not responded within 10 seconds after any 1/O statement

ON TIMEOUT 7,5 GOSUB Message

Causes the programto branch to subroutine Message if the GPIB
interface has not responded within 5 seconds after any 1/0
Statement

5-40 System Controller Mode Operation

Servicing Events and
Interrupts

Example: Servicing
Interrupts and Events

For event-initiated branching to occur an interrupt or event must occur and be
logged by the IBASIC system. If an undefined softkey is pressed but the event has
not been set up with ON KEY to cause an event-initiated branch, no action (other
than a beep to indicate an error) occurs.

When the IBASIC computer receives an interrupt or event which has been set-up, if
the computer is enabled to branch (with ON INTR, ON CY CLE, etc.) the event or
interrupt will be serviced by the computer. The way interrupts and events are
serviced depends on the interrupt or event softwar e priority and the service routine
system priority.

This program shows away to service interrupts from an instrument and from an
GPIB deviceusing ON CYCLE, ON ERROR, ON KEY, and ON TIMEOUT. It
will continuoudly display acount and voltage. Pressing F1 printsthe current MSI
catalog and returns to counting. Y ou must do a Basic Reset to exit.

10 I RE-SAVE "EVENTS"

20 ASSIGN @E1410 TO 80904 Assign address of E1410
30 ASSIGN @Hp3456 TO 722 Assign address of Agilent3456
40 CLEAR @E1410 Get DVM'’s attention

50 OUTPUT @E1410;"*CLS;*RST"
Clear status and reset hardware
60 WAIT .2 Givetimefor reset
70 ON CYCLE 1 GOSUB Take_reading Interrupt every 1 second
80 ON KEY 1 LABEL "CAT" GOSUB Cat_ CAT disc on key 1 depression

90 LOOP

100 ON ERROR GOTO Overl Set for error condition
110 PRINT 1/0 Forceerror

120 PAUSE If no error, then pause
130 Overl:OFF ERROR Turn off error branching

150 ON TIMEOUT 7,.1 GOTO Over2 Enabletimeout detection on 7

160 ENTER @Hp3456;Volt
Request a reading which was not made because it was not

requested
170 PAUSE If reading received, pause
180 Over2:! off timeout 7 Turn off timeout detection

190 DISP Count_,Dcvolt
Display E1410 reading and count
200 END LOOP

220 Take reading: ON CYCLE routine

230 OUTPUT @E1410;"MEAS:VOLT:DC?" Request measurement
240 ENTER @E1410;Dcvolt Read results

250 Count_=Count_+1 I ncrement count

260 RETURN Return frominterrupt

270 Cat_:CAT ":;,700"

280 RETURN

290 END

System Controller Mode Operation 5-41

Priority Definitions The interrupt or event software priority isthe priority assigned to an interrupt or
to an event with an ON INTR or ON-event command. The range is 1 through 15,
with 15 being the highest software priority. ON TIMEOUT has an effective
software priority of 16, while ON ERROR has an effective software priority of 17.
The priorities of ON TIMEOUT and ON EVENT cannot be changed.

The service routine system priority is the priority of the service routine currently
being executed. If no service routineis currently executing, the system priority is 0.
If aservice routineis currently executing, the system priority is the same as the
software priority assigned for the routine. The system priority can be changed with
the SYSTEM PRIORITY command. See Changing System Priority in this chapter
for details.

Software Priority Aninterrupt or some events can be assigned a software priority with an
ON-event-branch <priority> command, where <priority> = 1 through 15 with 15
being the highest priority. The following table shows the software priority
structure for the IBASIC system

IBASIC Software Priorities for Events and Interrupts

Event/Interrupt Range Notes
ON CYCLE 1-15
ON ERROR 17 Highest priority - cannot be changed
ON INTR 1-15
ON KEY 1-15
ON TIMEOUT 16 Priority cannot be changed

Logging Events and To service interrupts or events, the IBASIC computer first logs the occurrence of an
Interrupts interrupt or event which is enabled to branch (with ON INTR, ON CY CLE, etc.).
Then, the interrupt/event’s software priority is checked against the priority of the
service routine currently executing (the system priority).

If the system priority is higher than the software priority assigned to the interrupt or
event, the interrupt or event will not be serviced until the currently-executing
service routine compl etes.

NOTE IBASIC only services events or interrupts at the end of aline execution.

Example: Servicing Events For example, consider the following two lines of code, and assume the system
by IBASIC Computer priority = 0 (no service routine currently executing).

100 ON KEY 1,3 Call Key_1

Causes the programto branch to subprogram Key_1 when
softkey k1 is pressed and assigns software priority 3 to the event

110 ON KEY 2,4 Call Key_2
Causes the programto branch to subprogram Key_2 when
softkey k2 is pressed, and assigns software priority 4 to this event.

Figure 5-15 shows atypical sequence of actions when softkey k1 is pressed and
then softkey k2 ispressed. If k2 is pressed after k1 is pressed, but whileKey _1is

5-42 System Controller Mode Operation

executing, Key_1 execution is temporarily interrupted and the Key 2 routineis
executed. When Key 2 isfinished, Key_1 resumes execution where it was
temporarily interrupted. Thisis because softkey k2 was assigned a higher software

priority than k1.
System
Priority
"Key_1" execution pre—empted.
4 /
X I N S
2
1
0 -
- A AN A J time
Y
Main program’s Key_ Key 2 "Key_1" Main program’s
lines being being being execution execution
executed, executed, executed. completed. continued.
p— £1400-1 FIGS-15
(%]

pressed

o
=4
[
(724
24
[1°4
[«

Figure 5-15. Higher Software Priority Takes Precedence

In contrast, Figure 5-16 shows atypica sequence of actions when k1 is pressed
after k2 is pressed. In this case, Key_2 finishes execution before executing Key 1.
The event of pressing k1l islogged but not serviced until the routine with higher
software priority completes.

System
Priority
4
3
2
1
0 -
N Al J\ J\ J time
Y Y h'd h'd
Main program's "Key_2" "Key_1" Main program's
lines being being being execution
executed. executed. executed. continued.
— — £1400-18 FI65-18
(2] (4]
pressed pressed

Figure 5-16. Lower Software Priority Event Must Wait

Changing System Priority The system priority assigned to an executing service routine is set by the software
priority of the event or interrupt which caused the branch to the service routine. For
example, if an event has software priority 5, the service routine has system priority

System Controller Mode Operation 5-43

5 when it begins execution (the service routine has system priority 0 when not
executing).

If you do not want the service routine to be disturbed by events or interrupts of
higher software priority you can usethe SYSTEM PRIORITY command to set the
system priority to ahigher level than would normally occur as aresult of the
computer branch. Y ou can determine the current system priority with
SYSTEMS$("SY STEM PRIORITY") which returns astring value from 0 through
15.

Example: Changing For thisprogram segment, when KEY 2 (softkey 2, software priority 2) is pressed,
System Priority the system priority for subroutine Key_2 is set to 2. To ensurethat Key 2
operation is not disturbed by pressing KEY 3 (software priority 3), line 370 sets
system priority to 3 so that a priority of 4 or greater is required to interrupt the
Key 2 routine. When the routine finishes execution, the system priority is
lowered to O.

10 ! RE-SAVE "PRIORITY"
20 ONKEY 1 LABEL "ALPHA",1 GOSUB Key_1

Pressing Key 1 startsthe Key_1 routine, which displaysthe
letters of the al phabet.

30 ONKEY 2 LABEL "COUNT",2 GOSUB Key_2

Pressing Key 2 startsthe Key_2 routine, which counts from 1 to
1000. IftheKey 1routineisrunningitisinterrupted. The
Key 1 routinewill resume after the Key 2 routine is finished.

40 ON KEY 3 LABEL "END",3 GOTO Key_3

Exit routine if Key 3ispressed. If theKey 2 routineisrunning
the exit will not happen until it isfiniched.

50 LOOP
Loop and wait for an interrupt
60 WAIT .2
70 A=A+1
80 END LOOP
90 Key_1:!
Key 1 routine displays the alphabet
100 FOR C=32TO 64
110 WAIT .1
120 C$=CHR$(C)
130 DISP C$
140 NEXTC
150 RETURN

5-44 System Controller Mode Operation

Servicing Pending
Interrupts/Events

160 Key_2:!
Key_2 routine counts from 1 to 1000
170 SYSTEM PRIORITY 3
180 FOR I=1 TO 1000
190 DISP |
200 NEXTI
210 SYSTEM PRIORITY O
220 RETURN
230 Key_3:!
Key_3 routine exits thre program once the Key_2 routine stops
running.
240 DISP "End Program"
250 END

If the IBASIC computer is interrupted while executing a program line, al interrupts
and events are logged and line execution continues until the lineis completely
executed or until thelineis exited as aresult of auser-defined function. When the
lineis exited, IBASIC begins servicing all pending interrupts/eventsin the
following order.

1. Highest software priority first, lowest software priority last.

2. Eventswith the same software priority and interface select code (such as
softkeys with the same software priority) are serviced in the order they
occurred.

Logging of other events/interrupts may still take place when current
eventg/interrupts are being serviced. Thus, events/interrupts of higher hardware
priority will interrupt the current activity to be logged.

Events/interrupts which also have higher software priority will interrupt the current
activity to be serviced. Asaresult, events/interrupts of high hardware and software
priority can potentially be serviced many times between program lines.

System Controller Mode Operation 5-45

Synchronizing
Instrument/Device

Operations
Controlling
Instruments/GPIB

Devices

Example: Controlling
Instruments/Devices

This section gives guidelines to use the IBASIC computer in System Controller
mode to:

+ Control instruments/GPIB devices
» Synchronize instruments/GPIB devices
» Passcontrol to external computer

For System Controller mode, the IBASIC computer can control both internal
instruments and external GPIB devices. Use OUTPUT 809ss; and ENTER 809ss; to
control instruments viathe IBASIC interface, where ss=the instrument’s secondary
address.

Assuming an GPIB interface select code of 7, use OUTPUT 7ppss; and ENTER
7ppss; statements to control external GPIB devices viathe GPIB interface, where
pp=the device's primary address and ss=the device's secondary address. Similar
results can be achieved using Select Code 16 and the message based device logical
address. The examplesin this section will al use Select Code 8.

This example shows away to use the IBASIC computer in System Controller mode
to control an interna instrument (Agilent E1410A DMM at address 80903) and an
external GPIB device (an Agilent 3457A DMM at address 722) to make DC voltage
measurements. See Figure 5-17 for typical connections.

C-size Mainframe

USER E1410A
- DMM
DEVICE @80903

@E1410

IBASIC

TERMINAL COMPUTER

T

3457A
DVM &
@722

E1400—-IB FIG5—17

Figure 5-17. Controlling Instrument Devices

5-46 System Controller Mode Operation

5 IRE-SAVE "GPIB_INS"
10 ASSIGN @E1410 to 80903
Assign /O path to Agilent E1410A
20 ASSIGN @Hp3457 to 722
Assign 1/O path to Agilent 3457A DMM
30 OUTPUT @E1410;"MEAS:VOLT:DC?"
Make DCV measurement with Agilent E1410A DVM
40 ENTER @E1410;A
Enter Agilent E1410A DVM measurement
50 PRINT "Agilent E1410A Voltage =";A
Display E1410A measurement
60 OUTPUT @Hp3457;"PRESET"

Sets Agilent 3457A DVM to DC volts, autoranging, and
synchronoustrigger. Thereading is then automatically triggered
by the ENTER: command.

70 ENTER @Hp3457;B

Triggers and enters Agilent 3457A DVM measurement
80 PRINT "Agilent 3457A Voltage = ";B

Display Agilent 3457A measurement
90 END

A typica returnis. Agilent E1410A Voltage = 2.343657
Agilent 3457A Voltage = 3.241458

Synchronizing With System Controller mode, several methods are avail able to synchronize
Instrument/Device operationsamong instruments, GPIB devices, and the IBASIC computer. Four ways
Operations to synchronize instruments and devices discussed in this section are to use:

» Agilent E1406 Ports
* ThelBASIC computer
* The*OPC? command
e The*OPC command

Synchronization Using Ports For System Controller mode, the IBASIC computer and the Agilent E1406 TRIG
OUT and EVENT IN ports can be used to synchronize operations between
instruments and GPIB devices. (See the E1406A Command Module User’s Manual
for an explanation of TRIG OUT and EVENT IN port operations.)

System Controller Mode Operation 5-47

Example: Synchronization Thisprogram uses the Agilent E1400 Trig Out and Event In portsto synchronize an
Using Ports externa multimeter (Agilent 3457A a address 722) to an internal multimeter
(Agilent E1410A and Agilent E1345A multiplexer at address 80914). Since
synchronization is independent of the IBASIC computer, readings must be stored in
Agilent 3457A reading memory. See Figure 5-18 for typical connections.

0] C-size Mainframe
8 E1345A4 MULTIPLEXER @80914 MULTIMETER INPUT
ololH| @
E[N\ 3457A MULTIMETER @722
N\
H ﬁ < 00®®»O ‘o 9 >
| \ L Il @
(
\ \ / \
TRIG IN
FE 1405/E1406 \ \. - @
\ 5V
oV MAX VOLTMI:TER EXTERNAL\
XR\G out ov— COMPLETE TRIGGER
MAX +5V
U\/*
@ E1400-1B\FIG5-18.

Figure 5-18. Synchronizing Using Ports

The sequence of operation is:

1

N

3.
4.

o

INIT (line 50) closes multiplexer channel number 100.
Channel 100 closure generates a pulse at the Trig Out port that triggers the
multimeter to take a reading.
When the reading is complete, the reading is stored in multimeter memory.
The multimeter then outputs a pulse from its Voltmeter Compl ete port to the
Event In port on the Agilent E1406. This pulse signals the multiplexer to
advance to the next channd in the scan list.

Steps (2) - (4) are repeated until all channels have been scanned.

10 RE-SAVE "PORTSYNC"

20 DIM A(15)
30 CLEAR 722 Clear GPIB voltmeter
40 OUTPUT 722;"PRESET" Preset voltmeter to known state

50 OUTPUT 722;"MEM FIFO"
Set voltmeter memory for first-in first-out operation
60 OUTPUT 722;"TBUFF ON"
Turn voltmeter trigger buffer ON
70 OUTPUT 722;"TRIG EXT"
Set voltmeter to look for external trigger
80 OUTPUT 722;"NRDGS 1,AUTO"
Set number of readings per trigger to one
90 OUTPUT 80914.;"*RST" Reset multiplexer

5-48 System Controller Mode Operation

100 OUTPUT 80914.;"OUTP ON"
Activate trigger output on action complete
110 OUTPUT 80914.;"TRIG:SOUR EXT"
Set multiplexer trigger source to external
120 OUTPUT 80914.;"SCAN:PORT ABUS"
130 OUTPUT 80914.;"SCAN (@100:115)"
Set up multiplexer scan
140 OUTPUT 80914.;"*OPC?"
Ask for operation complete indication

150 ENTER 80914.;B Wait for operation complete
160 OUTPUT 80914.;"INIT" Initiate scanning sequence

170 ENTER 722;A(*) Read data array from voltmeter
180 FOR I=0 TO 15

190 PRINT A(l) Display data

200 NEXT |

210 END

Synchronization Using The IBASIC computer can be used to provide synchronization to instruments or
IBASIC Computer GPIB devices by triggering the instrument or device viathe Agilent E1406 TRIG
OUT port.

Example: Synchronization Thisprogram uses the Agilent E1406 Trig Out port to synchronize an externa
Using IBASIC Computer GPIB device (Agilent 3457A DVM at address 722) to an interna instrument
(Agilent E1345A multiplexer at address 80914). The IBASIC computer enters each
reading and sends a TRIGGER command to advance the multiplexer to the next
channdl in the scan list. See Figure 5-19 for typical connections.

C-size Mainframe

8 @* E1345A MULTIPLEXER @80914 MULTIMETER INPUT
o
%\] [\\ 3457A MULTIMETER @722
N\
H N [eJe15)51e) F 9
©

f= =b.

I

N m

H E1405/E1406 NN / \
/ N / \

N
TRIG IN /
N ~ \
N /
\ 5V MAX VOLTMETER EXTERNAL\
TRIG OUT COMPLETE TRIGGER
h ©
MAX +5v
WLl
@—» EMDD*\B\F\GS*WQ

Figure 5-19. Synchronizing Using a Computer

System Controller Mode Operation 5-49

The sequence of operation is:

NP

3
4

(21

INIT (line 50) closes multiplexer channel number 100.
. Channel 100 closure causes apulseon Trig Out port that triggers the
multimeter to take a reading.
. When thereading iscompleteit is sent to the IBASIC computer (line 70).
. The IBASIC computer sends the TRIGGER command (line 90) to the
multiplexer, which advances it to the next channel in the scan list.
. Steps (2) - (4) are repeated until al channels have been scanned and all
readings taken.
5 IRE-SAVE "COMPSYNC"
10 OUTPUT 722;"TRIG EXT;DCV"
St DVM to external trigger, DC voltage measurements
20 OUTPUT 80914;"OUTP ON"
Enable TRIG OUT port
30 OUTPUT 80914;"TRIG:SOUR BUS"
Sat multiplexer to advance scan on TRIGGER
40 OUTPUT 80914;"SCAN (@100:110)"
Soecify scan list (channels 100 to 110)
50 OUTPUT 80914;"INIT"
Close first channel (starts scanning cycle)
60 FORI=1TO 10
Loop 10 times
70 ENTER 722;A

Enter reading (IBAS C computer waits until reading taken and
received)

80 PRINT A
Display reading on terminal
90 TRIGGER 80914
Trigger multiplexer to advance to next channel
100 NEXTI
Increment count
110 END

5-50 System Controller Mode Operation

Synchronization Using The* OPC? command causes a specified instrument to place an ASCII "1" in the
*OPC? instrument’s Output Queue (see Figure 5-11) when all pending operations (such as
making voltage measurements or outputting a voltage) are complete.

By requiring the IBASIC computer to read the * OPC? response before continuing
program execution, you can provide synchronization between one or more
instruments and the IBASIC compulter.

Example: Synchronization Thisprogram uses the * OPC? (operation complete query) command to synchronize
Using *OPC? operations between two instruments and the IBASIC computer. The example uses
an Agilent E1328A D/A Converter module (DAC) at address 80909 and an Agilent
E1410A DMM at address 80903.

The application requires the DAC to output avoltage to a device under test (DUT).
After the voltage is applied, the DMM measures the response from the DUT. Using
the * OPC? command ensures the voltage measurement will be made only after the
voltageis applied by the DAC. SeeFigure 5-20 for typical connections.

C-size Mainframe

E1328A
DAC
@80909
USER
DEVICE

E1326A
DMM
@80903

TERMINAL i\ ‘* o OHI\B/IﬁSLJlgER

E1400-1B FIG5-20

Figure 5-20. Synchronizing Using *OPC?

5 IRE-SAVE "OPCSYNC"
10 OUTPUT 80909;"SOUR:VOLT1 5;*OPC?"

Configure DAC to output 5V on channel 1. Placea"1" inthe
DAC'’s Output Queue when done.

20 ENTER 80909;A Wait for * OPC? response from
DAC

30 OUTPUT 80903;"MEAS:VOLT:DC?"Measure DC voltage on DUT
with DMM

40 ENTER 80903;A Enter DUT voltage reading

50 PRINT "DUT Voltage =";A Display DUT voltage reading

60 END

System Controller Mode Operation 5-51

Synchronization Using *OPC The* OPC command causes the specified instrument to set bit O (Operation
Complete) in its Standard Event Register (see Figure 5-11) when all pending
operations for the instrument are complete.

By enabling the Operation Complete bit in the Standard Event Register (with * ESE
1); bit 5 of the Status Byte Register (with * SRE 32); an IBASIC interface interrupt
(with ENABLE INTR 8); and an event-initiated branch (with ON INTR 8), the
computer can do other operations while waiting for the interrupt to occur (when
instrument operations are compl ete).

Although either * OPC or * OPC? can be used for synchronization, the advantage of
using *OPC isthat the computer can do other operations while waiting for the
response caused by * OPC. However, when using * OPC the Operation Complete bit
(bit 0) in the Standard Event Register must be the only bit enabled. If other bits are
also enabled, this method may not work properly.

Example: Synchronization Thisexample usesan Agilent E1328A D/A Converter module (DAC) at address
Using *OPC 80909 and an Agilent E1410A DMM at address 80903. The application requires the
DAC to output a voltage to a device under test (DUT). After the voltageis applied,
the DMM mesasures the response from the DUT. See Figure 5-21 for typical

connections
Csize Mainframe
E1328A
DAC
@80909
USER
DEVICE

E1326A
DMM
@80903

BASIC |
TERMINAL COMPUTER

E1400-IB FIG5-21

Figure 5-21. Synchronizing Using *OPC

In contrast to the * OPC? example, this program uses the * OPC command to
synchronize the IBASIC computer and the two instruments. The advantage of using
*OPC rather than * OPC?isthe IBASIC computer can do other operations while
waiting for the instrument(s) to complete operations.

However, for this method the Operation Complete bit (bit 0) must be the only
enabled bit in the Standard Event Status Register (*ESE 1). If other bits (such as
error bits) are enabled, this method may not work properly.

5-52 System Controller Mode Operation

Passing Control to
External Computer

Example: Passing Control
to External Computer

10 !'RE-SAVE "OPCSYNC2"
20 OUTPUT 80909;"*CLS"
Clear all status structures on DAC
30 OUTPUT 80909;"*ESE 1"
Enable Sandard Event Register OPC hit (bit 0)
40 OUTPUT 80909;"*SRE 32"

Enable Satus Byte Register ESB hit (bit 5) to send SRQ when
DAC compl etes operations

50 OUTPUT 80909;"SOUR:VOLT1 5;*OPC"
Configure DAC, set Operation Compl ete bit when done
60 ON INTR 8 GOTO Meas
Branch to Meas (line 80) when DAC operations complete
70 ENABLE INTR 8;2
Enable IBASIC interface to interrupt on SRQ
80 LOOP
90 ! (Computer can do other operations here)
100 END LOOP
110 Meas: !
120 OUTPUT 80903;"MEAS:VOLT:DC?"
Measure DC voltage with DMM
130 PRINT "DUT Voltage =";A
Display reading on terminal
140 END

For proper GPIB operation, only one computer on the GPIB can be the System
Controller. However, one computer can be the System Controller while another
computer isthe Active Controller. For System Controller mode only, the IBASIC
computer wakes up as the System Controller and the Active Controller.

Thus, for System Controller mode the Active Controller function can be passed
from the IBASIC computer to an external computer via the GPIB interface with the
PASS CONTROL command. In generd, the external computer should not be set for
System Controller function when using PASS CONTROL. This permits IBASIC to
perform aRESET or ABORT 7 to regain Active Controller function.

This example shows away to use the IBASIC computer as the Active Controller to
store datain the external GPIB hard disk and then pass Active Controller function
to an external computer so that the data can be transferred to the external computer.

For this program, System Controller mode must be set and the external computer
(HP 9000 Series 200/300 computer with GPIB interface 7) should be set for
Non-System Controller function. See Figure 5-22 for typical connections.

System Controller Mode Operation 5-53

USER
DEVICE

C-size Mainframe

E1410

COMPUTER

EXTERNAL 721

Vin —=

= DMM
@80903

IBASIC
COMPUTER

|

HP 9000
Series 200/300

SS

-80
DISK or TAPE

E1400-IB FIG5-22

Figure 5-22. Passing Control

Run this program first in the HP 9000 Series 200/300 computer:

10
20
30

40

50
60
70
80
90

110

I RE-SAVE "PASSCTL2"

REAL Volts(1:10)

ON INTR 7 GOTO Have_control
Set up branch on PASS CONTROL
ENABLE INTR 7;-32768.

Enable detection of PASS CONTROL

I Wait here until control passed

!
LOOP

Create array for readings

DISP "WAITING FOR CONTROL ";Count_
100 Count_=Count_+1

END LOOP

120 Have_control:OFF INTR 7

130
140

150
160
170
180
190
200
210
220

5-54 System Controller Mode Operation

ASSIGN @File TO "DATA1:,700"

ASSIGN @Comp709 TO 709
Set up path to Command Module

ENTER @File;Volts(*)
ASSIGN @File TO *

FOR I=1 TO 10
PRINT Volts(l)

NEXT |

PASS CONTROL @Comp709

DISP "DONE"

END

Deactivate interrupt
St up path to file

Read data fromfile
Close data file
Print selected results

Return control

Run this program second in the IBASIC computer:

10 ! RE-SAVE "PASSCTL1"
20 REAL Volts(1:10) Create array for readings
30 ON ERROR GOTO Already_there If already created then skip
40 CREATE BDAT "DATA1:,700,0",50 Createdatafile
50 Already_there:!
60 ASSIGN @File TO "DATA1:,700,0" Set up pathtofile
70 ASSIGN @E1410 TO 80903. Set up path to DVM
80 ASSIGN @Comp721 TO 721
Set up path to HP Series 200/300
90 CLEAR @E1410 Get the DVM’s attention
100 OUTPUT @E1410;"*CLS;*RST"
Clear its status and reset hardware
110 WAIT .2 Giveit timeto reset
120 OUTPUT @E1410;"SAMPLE:COUNT 10"
Configure for 100 measurements
130 OUTPUT @E1410;"INIT;:FETCH?"
Initiate and retrieve measur ements

140 ENTER @E1410;Volts(*) Read measurementsin array
150 OUTPUT @File;Volts(*) Sore measurementsto file
160 ASSIGN @File TO * Closefile

170 ON INTR 7 GOTO Active_control
Set up branch for PASS CONTROL
180 ENABLE INTR 7;-32768.
Enable detection of PASS CONTROL
190 PASS CONTROL @Comp721
Pass control to HP Series 200/300
200!
210 ! Wait until other computer passes control back
230 LOOP
240 DISP "WAITING FOR CONTROL ";Count_
250 Count_=Count_+1
260 END LOOP

270!

280 Active_control:OFF INTR 7 Deactivate interrupt

290 DISP "CONTROL RETURNED"

300 ASSIGN @File TO "DATA1:,700,0™ Set up path tofile
310 ENTER @File;Volts(*) Read data fromfileinto array
320 ASSIGN @File TO * Closefile

330 FOR I=1 TO 10 Print selected results
340 PRINT Volts(l)

350 NEXT |

360 DISP "DONE"

370 END

System Controller Mode Operation 5-55

5-56 System Controller Mode Operation

Chapter 6 Contents

Using This Chapter 6-1

Talk/Listen M ode Overview 6-1

Using PROGram Commands6-4

Downloading and Uploading IBASICPrograms« v o v v e v i 6-4
Controlling/Querying Programs e e 6-8

Controalling Instruments 6-10

Assigning InstrumentstoInterfaces o 6-10
Controlling Instrumentswith IBASIC Computer 6-11
Controlling Instruments with External Computer 6-11

Controlling RS-232/422 Peripherals 6-12

Storing/Retrieving Data 6-12

Enabling Interruptsand Events 6-13

Synchronizing | nstrument/Device Operations 6-14

Synchronize InstrumentsUsing IBASIC Computer 6-14
Synchronize InstrumentsUsing Two Computers v v v v v e e e o . 6-14

Chapter 6

Talk/Listen Mode Operation

Using This Chapter

NOTES

This chapter gives guidelines to use Tak/Listen mode operation to:

* Use PROGram commands

» Control instruments

» Control RS-232/422 peripheras

» Store/retrieve datato memory

» Enableinstrument interrupts and events
» Synchronize instrument operations

This chapter does not show how to use an external computer to control external
GPIB devices. See your computer manual for these applications.

All example programs in this chapter are written for an HP 9000 Series 200/300 (or
equivalent) computer. If you use a different computer, see your computer manual
for possible syntax differences.

In this chapter, the term "external computer" means any computer whichis
compatible with GPIB operation, such as an HP 9000 Series 200/300 computer or
equivalent. The term "GPIB computer” also refers to the external computer.

Talk/Listen Mode
Overview

Figure 6-1 showstypical functions for Talk/Listen mode operation. Talk/Listen
mode is very similar to System Controller mode except that System Controller
mode allows more IBASIC computer functions.

With Talk/Listen mode you can control instruments using both an external
computer viathe GPIB interface and the IBASIC computer viathe IBASIC
interface. However, you cannot access any external GPIB devices (including the
disk drives) from the IBASIC computer while in Talk/Listen mode. In System
Controller mode an external computer cannot be used for instrument control
directly but you can access externa GPIB devices (including the disk drives) using
the IBASIC computer.

Talk/Listen Mode Operation 6-1

Communicate With Message
Based Device Only
Using Select Code 16

GPIB DEVICES
L[™

EXTERNAL

Synchronize Instrument Operations with IBASIC or External Computer

Enable Instrument Interrupts from IBASIC or External Computer

Control Instruments from IBASIC or External Computer

C-size Mainframe

(GPIB),
COMPUTER

SS-80
DISK or TAPE

n £} B
“ X *) |.
SYSTEM al |y
‘ﬁ' INSTRUMENT 2l =
oo
SELECT o 1=
CODE 8 H k%1 %
DRIVER MODULE 3l 1<
INSTRUMENTS 112
SELECT
CODE 16 IBASIC
DRIVER | INSTRUMENT
GPIB
DRIVE
GPIB
PORT
(W IBASIC
| COMPUTER

RS—-232

RS-232
PERIPHERAL

—‘ INTERFACE

SERIAL
9

SERIAL
21-27
MEMORY
0,0
RAM H
VOLUMES
<file_name> H
IBASIC
MEMORY
L _

T

RS—-232/422
PERIPHERALS

J— E1324A

INTERFACES *

* INTERFACE MUST BE ASSIGNED TO IBASIC BEFORE CONTROL CAN TAKE PLACE

Download Programs to IBASIC from External Computer

Store Data to Memory from IBASIC Computer

E1400-1B FIGB-1

=]

Control RS—232/422 Peripherals from IBASIC Computer

Figure 6-1. Talk/Listen Mode Operation

6-2 Talk/Listen Mode Operation

Using PROGram Commands

With Talk/Listen mode, you can create programs on an external computer and
download a program to the IBASIC computer. Only one program at atime can be
resident in the IBASIC computer. The downloaded program can be queried and
controlled using the PROGram subsystem commands.

Controlling Instruments

For Talk/Listen mode, the IBASIC computer or the external computer can control
an instrument. At any onetime, an instrument can be assigned to the external
computer, to the IBASIC computer, or unassigned (not assigned to either).

Y ou can usethe ABORT, CLEAR, LOCAL, LOCAL LOCKOUT, REMOTE,
SPOLL, and TRIGGER commands to control an assigned instrument’s state from
the external computer or from the IBASIC computer. (PASS CONTROL is not
supported in Talk/Listen mode.)

Controlling RS-232/422 Peripherals

For Talk/Listen mode, when the interface is assigned to IBASIC you can control
external RS-232 peripherals viathe built-in RS-232 interface or control external
RS-232 and RS-422 peripherasvia Agilent E1324A plug-in module interfaces.

Storing/Retrieving Data

For Talk/Listen mode, the IBASIC computer can store/retrieve datato IBASIC
memory and to RAM volumes, but not to the 20 MByte hard disk or the 3.5 inch
disk.

Enabling Interrupts and Events
For Talk/Listen mode, the IBASIC computer can detect and service interrupts from
the IBASIC interfaces and from defined events, but not from external GPIB devices.

Synchronizing Instrument Operations

For Talk/Listen mode, the IBASIC computer can synchronize operations between
instruments, but not between instruments and external GPIB devices. Y ou can also
synchroni ze instruments operations using both the IBASIC computer and an
externa computer.

Talk/Listen Mode Operation 6-3

Using PROGram
Commands

With Talk/Listen mode, you can download a program created on an external
computer (HP 9000 Series 200/300 or equivalent) to the IBASIC computer and
control/query the downloaded program using the PROGram subsystem commands.
Only one program at a time can be downl oaded to the IBASIC computer. Figure 6-2
shows the main functions and associated PROGram subsystem commands to
download and control/query IBASIC programs.

Download/Upload Programs

Download: PROG:DEF
Upload: PROG:DEF?

Name/Catalog/Delete Programs

Name: PROG:NAME/NAME?
Catalog: PROG:CAT?
Delete: PROG:DEL:ALL

Use Variables/Strings —————————=

Variables: PROG:NUMB/NUMB?
Strings: PROG:STR/STR?

Assign Memory/Synchronize

Memory: PROG:MALL/MALL?
Wait: PROG:WAIT/WAIT?

Set State/Execute Commands

State: PROG:STAT/STAT?
Execute: PROG:EXEC
*rlA

Store Downloaded Programs

RAM Volumes: ":MEMORY,0"
IBASIC Memory: ENTER @variable

*rlA
C-size Mainframe
v v GPIB
External - GPIB IBASIC . \BAS\(JE
Computer 70930 Instrument omputer
MEMORY
RAM
H Volumes
<file_name>
H IBASIC <J_)
Memory J

L ——

£1400-1B FIG6—-2

Figure 6-2. Using PROGram Subsystem Commands

Downloading and
Uploading IBASIC
Programs

Downloading Programs

6-4 Talk/Listen Mode Operation

Programs created on an HP 9000 Series 200/300 (or equivalent) computer can be
downloaded to the IBASIC computer using PROGram: DEFine commands and can
be uploaded from the IBASIC computer using the PROGram:DEFine? command.

The path to download programsis from the external computer to the IBASIC
instrument (address 70930) via the GPIB interface. The IBASIC instrument accepts
the program lines from the external computer and sends the "shell" IBASIC
program to the IBASIC computer.

Program lines are downl oaded to the IBASIC computer using indefinite length
block parameters. For indefinite length block data, END must immediately follow
the last byte of block datato force termination of the program message.

For example, OUTPUT @IBASIC;"PROG:DEF #0" indicates that the program
lines which follow areto be sent in indefinite block parameter format. Thus, an
END statement is required after the last line of the program to be downl oaded.

Example: Downloading
Program Lines to IBASIC
Computer

NOTE

Example: Downloading
Previously Stored Programs

This program shows one way to download program linesto the IBASIC computer
from an HP 9000 Series 300 computer. The actual program to be stored in the
IBASIC computer (downloaded in lines 140 to 170) is:

10 FOR1=1TO 100
20 PRINT I

30 NEXTI

40 END

The program listing is:

90 IRE-SAVE "DOWNLD1"
100 ASSIGN @IBASIC to 70930
Assign /O path to IBAS C instrument from GPIB computer
110 CLEAR @IBASIC
Clear IBASIC instrument
120 OUTPUT @IBASIC;"*RST;*CLS;PROG:DEL:ALL"
Reset IBAS C instrument, and del ete any downloaded program
130 OUTPUT @IBASIC;"PROG:DEF #0"
Program lines to be downloaded in indefinite length block for mat
140 OUTPUT @IBASIC;" 10 FOR =1 TO 100"
First line of downloaded program
150 OUTPUT @IBASIC;" 20 PRINTI"
160 OUTPUT @IBASIC;" 30 NEXT I"
170 OUTPUT @IBASIC;" 40 END" END
Last line of downloaded programwith EOI asserted
180 END

This program only downl oads the code to the IBASIC computer. Y ou must run the
program from the IBASIC computer.

The previous downloading program example is acceptable for a small program.
However, for alarge program or one which has been previoudly stored, typing the
line entries may be cumbersome or time-consuming. This example shows away to
download the same previoudy-stored program from an HP 9000 Series 300
computer to the IBASIC computer.

Thefile (called DOWNLD3 in the program) is assumed to be stored on floppy disk.
To usethis program, substitute the file name you want to download in place of
DOWNLD3 in line 30.

In the program, lines 10 through 40 dimension an array and assign 1/O paths, while
lines 80 through 100 configure the IBASIC instrument to accept the program to be
downloaded (downloading format is indefinite length block parameter).

Lines 110 through 150 takes one program line at atime from DOWNLD3 and sends
it to the IBASIC computer, until all program lines are transferred, and the program

Talk/Listen Mode Operation 6-5

then goesto Done. Line 210 lists the downloaded program lines on the IBASIC
display, line 220 runs the program, and line 230 closes the 1/O path to DOWNLD3.

5 IRE-SAVE "DOWNLD4"
10 DIM In$[160]
Dimension array In$ long enough for IBASIC program line
20 ASSIGN @IBASIC to 70930.
Assign IBAS C instrument to Series 300 computer
30 ASSIGN @File TO "DOWNLD3:,700,1";FORMAT ON
Assign 1/O path to file"DOWNLD3"
40 ON END @File GOTO Done

50 !
60 ! Configure IBASIC for downloaded program
80 CLEAR @IBASIC Clear IBASIC instrument

90 OUTPUT @IBASIC;"*RST;*CLS;PROG:DEL:ALL"

Reset/clear IBAS C instrument, and delete programin IBASC
computer.

100 OUTPUT @IBASIC;"PROG:DEF #0"
Send program linesin indefinite length block parameter form
110 LOOP
120 Ing=""
130 ENTER @File;In$
140 OUTPUT @IBASIC;In$
150 END LOOP
160 Done: !
170 OUTPUT @IBASIC;" " END
END required for indefinite length block parameter form
180 !
190 ! List and run downloaded program
210 OUTPUT @IBASIC;"PROG:EXEC 'LIST"
Program lists on current display system connected to IBASIC
220 OUTPUT @IBASIC;"PROG:STATE RUN"
230 ASSIGN @File TO *
240 END

The contents of DOWNLD3are:

5 IRE-SAVE "DOWNLD3"
10 FORI=1TO 100

20 PRINT I
30 NEXTI
40 END

6-6 Talk/Listen Mode Operation

Uploading Programs

Example: Uploading
Program Lines

Controlling/Querying
Programs

To upload aprogram from the IBASIC computer to an external computer, use
OUTPUT 70930;"PROGram:DEFine?" followed by ENTER statements to the
external computer. Program lines from downloaded IBASIC programs are uploaded
to the external computer in definitelength block response data format.

This example uploads the previous 4-line IBASIC program from the IBASIC
computer and prints it on the IBASIC display.

10 ! RE-SAVE "UPLOAD2"

20 DIM In$[160] Allocate for max length line
30 ASSIGN @IBASIC TO 70930. Set path to IBASC instrument
40 CLEAR @IBASIC Get IBASC's attention

50 OUTPUT @IBASIC;"PROG:DEF?" Request program upload

60 !

70 ! Now strip off the Definite Length Block Header

80 !

90 ENTER @IBASIC USING "#,A";Pound$[1,1] Read the #

100 ENTER @IBASIC USING "#,A";Length$[1,1]

110 Length=VAL(Length$[1,1])

120 FOR I=1 TO Length

130 ENTER @IBASIC USING "#,A";N$[l,1]

140 NEXT I

150 !

160 ! The remainder of upload is actual program lines separated
170 !by CR/LF and terminated with EOI on LF. Enable interrupt
180 !onrecognizing EOI with last request.

190 !

200 ONINTR 7 GOTO Done Enable branch on Interrupt
210 ENABLE INTR 7;2048 Enable EOI interrupt

220 LOOP Loop until EOI received

230 ENTER @IBASIC;In$
240 PRINT In$

250 END LOOP

260 Done: !

270 END

The actua program listing, which must bein the IBASIC computer, is:

10 FORI=1TO 10

20 PRINT I
30 NEXTI
40 END

In addition to downloading and uploading IBASIC programs, the PROGram
subsystem commands can be used to control and query downloaded programs. A
summary of the PROGram commands follows. See Chapter 8 - SCPI Command
Reference for further information on the PROGram subsystem commands.

Talk/Listen Mode Operation 6-7

Naming IBASIC Programs

Cataloging IBASIC
Programs

Deleting IBASIC Programs

Assigning Values to
Program Variables

Set Contents of Program
Strings

Assigning IBASIC Memory
Space

Using Program Wait

6-8 Talk/Listen Mode Operation

Only one program can be resident in the IBASIC computer at atime. If desired, you
can name the program with PROGram:NAME and return the program name with
the PROGram:NAME? command. If adownloaded program has a name,
PROGram:NAME? returns the name. If the program is not named or a programis
not downloaded, PROGram:NAME? returns "PROG".

Y ou can aso use the PROGram:CATalog? command to see if a progam already
exigts. If the program exists, PROGram:CATa og? returns the name. If no program
has been created, PROGram:CATa og? returns the null string (""). A program can
be created with PROG:DEF# or by typing in any IBASIC command from the
Display system connected to IBASIC.

Use PROGram:DELete:ALL to delete adownloaded IBASIC program from
IBASIC memory. A downloaded program in the RUNning state cannot be del eted.
Sending PROGram:DEL ete:ALL when the program is running resultsin a
"PROGRAM CURRENTLY RUNNING" error and the program is not deleted. You
can use PROG:STATE STOP to stop the program before sending PROG:DEL:ALL.

When avariableis defined in a downloaded program, you can assign a valueto the
variable using PROGram:NUMBer <varname>,<nvalue> from an external
computer. PROGram:NUMBer? will return the current value of the variable. If
<varname> islonger than 12 characters, a delimiter () is required. For example:

OUTPUT 70930;"PROG:NUMB B,10"
Assignsvalue 10 to variable B

OUTPUT 70930;"PROG:NUMB 'number_devices’,1"

Assigns value of 1 to number_devices. Delimiter required since
variable nameislonger than 12 characters.

When astring variable or array is defined in adownloaded program, you can use
PROGram:STRing <var name>,<sval ue> to set the contents of the variable or array.
Y ou can use PROGram: STRing? to return the current contents of the variable or
array. For example:

OUTPUT 70930;"PROG:STR B, 'B = Result™
String assigned to variable B$ is’B = Result’

If required, you can use PROGram:MAL Locate <nbytes>|DEFault to reserve
IBASIC memory space for subroutine stack space and variables other than COM
variables. When DEFault is specified, the Agilent E1406 calcul ates the amount of
space required. You can use PROGram:MALLocate?to return the amount of space
currently allocated, when the IBASIC program is STOPped .

PROGram:WAIT and PROG:WAIT? cause the IBASIC instrument to wait until the
current operation is compl ete before executing the next command. For example:

10 OUTPUT 70930;"PROG:DEF #0" END

Defines a zer o-length program so commands can be sent to the
IBAS C computer

20 OUTPUT 70930;"PROG:EXEC 'WAIT 5;WAIT?"
Wait 5 seconds, then WAIT? returnsa " 1"

30 ENTER 70930;Value
Returns 1 to indicate end of WAIT time

NOTE Using *WAI or *OPC? for this example will not work, since *WALI or * OPC? will
not wait for the IBASIC computer to finish its command, but will only wait for the
IBASIC instrument to read and send the command.

Setting SRQ at Program End On occation you may wish to generate an SRQ (Service ReQuest) when a program
ends, so that you can continue with another routine, notify the operator, etc. The
following program segment should be run from the external computer after you
have downloaded a program to the IBASIC controller, and will accomplish this:

IDownload the program you wish to run to the IBASIC controller

ISet up the controller to recognize SRQ. This program would be
100 OUTPUT @IBAS; "*ESE 1;*SRE 32"

St the controller to generate an SRQ on OPC (OPeration
Complete)

200 OUTPUT @IBAS;"PROG:STATE RUN"
Run the program

300 OUTPUT @IBAS;"PROG:WAIT;*OPC"
Wait for programto end and set OPC

IContinue with the rest of your program

Setting Program State PROGram:STATe RUN|PAUSESTOP|CONTIinue sets the state of a downloaded
program, and PROGram:STATe? returns the current state of the program. Seethe
PROGram:STATe command in Chapter 8 - SCPI Command Reference for the
effects of changing program states.

Executing IBASIC PROGram:EXECute <'program_command'> executes the IBASIC command
Commands specified. However, PROGram:EXECute 'RUN’ will not be executed if a
downloaded program is currently running. For example:

OUTPUT 70930;"PROG:EXEC: 'LIST"
Lists the program lines of a downloaded program

OUTPUT 70930;"PROG:EXEC: 'RUN™
Causes a program not in RUNning state to run

Storing Downloaded Programswhich have been downloaded to the IBASIC computer can be stored in a
Programs non-volatile RAM volume and used for autostarting. See Chapter 2 - Creating and
Editing Files for details.

For Talk/Listen mode, the IBASIC computer cannot addressan GPIB disk, so
downloaded programs cannot be stored on these disks. The program to be
downloaded can be stored in the disks from an external computer, retrieved by the
external computer, and then downl oaded via the PROGram subsystem commands.
See Chapter 8 - SCPI Command Reference for information on the PROGram
commands.

Talk/Listen Mode Operation 6-9

Controllin g For Talk/Listen mode, instruments (plug-in module instruments, the System
Instruments instrument, and the IBASIC instrument) can be controlled by an external computer
viathe GPIB interface or by the IBASIC computer viathe IBASIC interfaces (see

Figure 6-3).

Control Instruments*
IBASIC computer: OUTPUT 809ss; and ENTER 809ss;
or OUTPUT 16[xx]xx; and ENTER 16[xx]xx
External computer: OUTPUT 709ss; and ENTER 709ss;

C-size Mainframe

e N\
IBASIC
809ss h

- | SYSTEM

7"ﬁ’ INSTRUMENT
SELECT ,
CODE 8 j—mf

DRIVER k MODULE

INSTRUMENTS
. “ —
__.| SELECT % IBASIC

CODE 16 \ | INSTRUMENT
DRIVER “

GPIB DEVICES

(

(GPIB)
COMPUIER

IBASIC
COMPUTER

SS-80
DISK or TAPE

E1400-1B FIGB-3

Control External GPIB Devices**
External Computer: OUTPUT 7ppss; and ENTER 7ppss;

* Instruments must be assigned to computer
** pp=primary address, ss=secondary address

Figure 6-3. Instrument Control - Talk/Listen Mode

Assigning Instruments Aninstrument can be controlled by only oneinterface at atime. For an interface to
to Interfaces control aninstrument, the instrument must first be assigned to the interface. An
instrument can be assigned to GPIB, select code 8, select code 16, or can be

unassigned (assigned to no interface).

Any combination of instruments can be assigned or unassigned. For example, an
Agilent E1410A voltmeter instrument could be assigned to the GPIB interface and
an Agilent E1332A counter instrument assigned to the IBASIC select code 8

interface at the same time.

In Figure 6-3, the System instrument is shown assigned to the IBASIC select code 8
interface, the modul e instruments are shown as unassigned, and the IBASIC

instrument is shown assigned to the GPIB interface.

Select code 16 can acquire only message based instruments. Since neither the
SYSTEM or IBASIC are message based, they cannot be controlled using select

code 16.

6-10 Talk/Listen Mode Operation

NOTE

Controlling
Instruments with
IBASIC Computer

NOTE

Controlling
Instruments with
External Computer

GPIB and IBASIC can arbitrate between secondary addressinstruments only. Itis
possible to program an instrument from both select code 8 and select code 16 if it
has both a secondary and logical address. Please see Synchronizing
Instrument/Device Oper ations later in this chapter for moreinformation on
handling this type of arbitration. To minimize arbitration problems, select code 16
should be used only for devices at non-secondary addresses.

Youwill usualy not need to assign instruments unless you use an externa
computer and the IBASIC computer to control of the sameinstrument. See
Synchronizing Instrument/Device Operations to assign instruments to computers for
two-computer operation.

For Talk/Listen mode, controlling instruments with the IBASIC computer is
identical to that for System Controller mode. See Controlling Instruments/GPIB
Devicesin Chapter 5 - System Controller Mode Operation for more information
and examples.

For Talk/Listen mode, the IBASIC computer is not connected to the GPIB interface,
so external GPIB devices cannot be controlled by the IBASIC computer in
Tak/Listen mode.

As shown in Figure 6-3, with Talk/Listen mode an external computer (such asan
HP 9000 Series 200/300 computer) can control instruments viathe GPIB interface.
For an HP 9000 Series 200/300 computer, use OUTPUT 709ss, and ENTER 709ss;
statements to communicate with an instrument at secondary address ss.

See the appropriate Agilent 75000 Plug-1n Module User Manual for information to
control an instrument from an external computer when an HP 9000 Series 200/300
(or equivaent) computer is used. See the appropriate plug-in manua and your
computer manual to control instruments from an external computer if you use
another compuiter.

Y ou can aso control instrument states with the ABORT, CLEAR, LOCAL,
LOCAL LOCKOUT, REMOTE, SPOLL, and TRIGGER commands. See Using the
GPIB/IBASC Interfaces in Chapter 5 - System Controller Mode Operation for
details.

Talk/Listen Mode Operation 6-11

Controlling
RS-232/422
Peripherals

NOTE

In Talk/Listen mode (and in System Controller mode), the IBASIC computer can
control external RS-232C peripheras viathe built-in RS-232 interface (interface
select code 9) or viaan RS-232 or RS-422 interface on an Agilent E1324A Data
Communications modul e (interface sel ect codes 21 through 27).

Controlling RS-232/422 peripheralsis identica to the operation for System
Controller mode. See Controlling RS-232/422 Peripherals in Chapter 5 - System
Controller Mode Operation for information and examples.

Storing/Retrieving

Data

NOTE

For Talk/Listen mode, data collected from instruments or external RS-232/422
peripherals can be stored in IBASIC memory or in RAM volumes.

Storing data to IBASIC memory or to RAM volumesisidentical to the operation
for System Controller mode. See Storing/Retrieving Data in Chapter 5 - System
Controller Mode Operation for information and examples.

With Tak/Listen mode, the IBASIC computer cannot access an GPIB SS-80 disk
or tape drive and an external computer must be used to store data from external
GPIB devicesto the disks. See your computer manual for procedures to store data
to theinternal disks.

Dato from
instruments

IBASIC Dota from
COMPUTER RS-232/422
peripherals

MEMORY

| ||

<file_name>

IBASIC
Memory

Store/Retrieve Data to Memory

2
=
=

i

E1400-1B FIG6-4

Figure 6-4. Storing/Retrieving Data

6-12 Talk/Listen Mode Operation

Enabling Interrupts

and Events

NOTE

Softkeys

)

With Talk/Listen mode the IBASIC computer can detect and service an interrupt
from the IBASIC interface and the ON CY CLE, ON ERROR, ON KEY, and ON

TIMEOUT events (see Figure 6-5). However, with Talk/Listen mode the IBASIC
computer cannot detect or service interrupts from the GPIB interface.

Enabling instrument interrupts and eventsis identical to the operation for System

Controller mode. See Enabling Interrupts and Eventsin Chapter 5 - System
Controller Mode Operation for information and examples.

C-size Mainframe

USER

Instruments

Enable Instruments to Interrupt

IBASIC

\BA;TC\\ SERIAL

—

J RS—-232/422
Peripherals

COMPUTER

INTERFACE

ON KEY
ON TIMEOUT

//

ON CYCLE
ON ERROR

E1400-1B FIC6-5

Enable Branching on Events

Service Interrupts and Events

Figure 6-5. Enabling Interrupts and Events

Talk/Listen Mode Operation 6-13

Synchronizing
Instrument/Device
Operations

Synchronize
Instruments Using
IBASIC Computer

NOTE

Synchronize
Instruments Using
Two Computers

Instrument Assignment
Overview

6-14 Talk/Listen Mode Operation

This section gives guidelines to synchronize instrument operations with the IBASIC
computer when Tak/Listen modeis set. It also gives guidelines to synchronize
instrument/GPIB device operations using an external computer and the IBASIC
computer when Tak/Listen modeis set.

For Talk/Listen mode, the IBASIC computer can synchronize operations between
instruments, but cannot synchronize operations between instruments and externa
GPIB devices. Some methods of synchronization use triggering (TRIGGER
command) and the Operation Complete (* OPC and * OPC?) commands.

See Synchronization Using IBAS C Computer, Synchronization Using * OPC?, and
Synchronization Using *OPC in Chapter 5 - System Controller Mode Operation for
some example ways to synchronize instrument operations using the IBASIC
computer.

A primary advantage of using Talk/Listen mode is that both an external computer
(GPIB computer) and the IBASIC computer can be used to control instruments. In
addition, the GPIB computer can control external GPIB devices via GPIB (the
IBASIC computer cannot control external GPIB devicesin Tak/Listen mode).

Y ou will probably use only one computer to control any given instrument.
However, you may want to "share" control of an instrument by first controlling the
instrument with the IBASIC computer and then shifting control to the external
computer or vice-versa. In this case, you will need to assign the instrument to the
appropriate computer.

Before an instrument can be controlled by an external computer or by the IBASIC
computer, the instrument must be assigned to the computer viaone of 3 interfaces
(select code 8, select code 16, and the GPIB interface). Figure 6-6 shows the
method used to assign instruments to the external computer or to the IBASIC
computer. There are four aspects of assigning an instrument to a computer:

* Requesting the instrument
» Arbitrating the request

* Reeasing the instrument
» Assigning the instrument

Assigning an Instrument

GPIB: 709ss to unassigned instrument
IBASIC: 809ss to unassigned instrument
16[xx]xx to unassigned instrument

Requesting an Instrument

GPIB: address with 709ss
IBASIC: address with 809ss

809XX

Releasing Assigned Instrument

GPIB: LOCAL 7 or LOCAL 709ss
IBASIC: LOCAL 8 or LOCAL 809ss

-
IBASIC CSSEECTS
COMPUTER |16
- M[E:S]” DRIVER r--»H
“ SYSTEM
SELECT INSTRUMENT
CODE 8 .
DRIVER +—
\1 T\% MODULE
GPIB 709XX GPIB -— INSTRUMENTS
COMPUTER DRIVER H —
- IBASIC
_»H INSTRUMENT

LOCAL

LOCAL 16 or LOCAL 16[xx]xx ARBITER REMOTE

Arbitrating Instrument Request =

Instrument unassigned: granted
Instrument assigned: denied * MBD=Message Based E1400-1B FIG6—6

RBD=Register Based

Figure 6-6. Assigning Instruments to Computers

Requesting an Instrument

At any onetime, an instrument can be assigned to the IBASIC computer viathe
IBASIC select code 8 or select code 16 interface , to an external computer viathe
GPIB interface, or can be unassigned (not assigned to either computer).

To request an instrument, the computer requesting the assignment issues an
addressed command (such as OUTPUT) containing the primary and secondary
address (or the logical addressif select code 16 is being used) of the instrument to
be assigned. Any addressed command will request instrument assignment, since the
address statement actually initiates the request.

For example, OUTPUT 709ss; from the external computer requests assignment of
the instrument at primary address 09 and secondary address ssto the external
computer. Or, OUTPUT 809ss; from the IBASIC computer requests assignment of
theinstrument at primary address 09 and secondary address ssto the IBASIC
computer.

Arbitration with select code 16 only occurs when a device has both a secondary
address and alogica address. For example, adevice with alogical address of 8
would normally be assigned a secondary address of 1 (LADD/8). In this situation
OUTPUT 80901, OUTPUT 1608, and OUTPUT 160008 dl refer to the same
device. If so, arbitration must take place if the instrument isto function properly.
To avoid confusion over this matter you should keep the use of select code 16 to a
minimum, using it only for devices at non-secondary addresses. With asmall
amount of carein setting up the systemit is usually possible to place al instruments
at secondary addresses and avoid the use of select code 16 entirely.

Talk/Listen Mode Operation 6-15

Arbitrating an Assignment When the assignment request is issued from an interface the arbiter grants or
Request deniestherequest. If the instrument is already assigned to another interface the
request isdenied until the instrument is released by the computer to which the
instrument is assigned (see Releasing an Instrument). A denial is denoted by the
lack of communication with the instrument, as though the instrument did not exist.

For example, suppose the System instrument is assigned to the external computer.
A reguest to assign the System instrument to the IBASIC computer will be denied
until the System instrument is released by the external computer.

For the IBASIC computer, when an assignment request is denied the IBASIC
interface will "hang" and not continue. For the external computer, the GPIB
interface may or may not hang, depending on the other devices on the bus. Y ou will
have to detect "hanging” with the ON TIMEOUT capability and retry until
successful.

NOTE Devices a non-secondary addresses are not arbitrated and can only be accessed via
select code 16.

Releasing an Instrument Toreleasean assigned instrument from a computer (to unassign the instrument),
use LOCAL 709ssto release an assigned instrument at secondary address=ss from
the external computer, use LOCAL 809ss to release an assigned instrument at
secondary address=ss from the IBASIC computer, or use LOACL 16[XX]XX to
release an assigned instrument at logical address=[XX] XX from the IBASIC
computer.

NOTE If an ingtrument is not assigned to either side, an addressed LOCAL command first
acquiresit and then releasesiit.

Releasing all Assigned Instruments

Use LOCAL 7toreleasedl assigned instruments from the external computer. Use
LOCAL 8or LOCAL 16 to release all assigned instruments from the IBASIC
computer. After the assigned instruments are released with aLOCAL 7 or LOCAL
8 command, you must send aREMOTE 7 or REMOTE 8 to allow the instruments
to be released again. Thetransition from REMOTE to LOCAL of the interface will
release al assigned instruments. This is not necessary for select code 16 since it
does not try to completely emulate GPIB operations as does select code 8.

Do not Send LOCAL Immediately

When sending OUTPUT 709ss; or OUTPUT 809ss; from the computer, do not send
LOCAL 709ss or LOCAL 809ssto release the instrument until the command
associated with the OUTPUT statement has completed. The act of releasing the
instrument will clear the input and output buffers and may abort acommand before

6-16 Talk/Listen Mode Operation

Assigning the Instrument

Example: Using Timeout
Value with Instrument
Request

it completes. Thisis applicable only to register based devices manufactured by
Agilent.

Instrument Status Information is Retained

When aregister based instrument is rel eased from an interface, the input/output
information islost but status information (such as SPOLL, SRQ, and ERRORYS) is
retained.

Suppose an instrument at address 80903 generated an SRQ which was logged but
not serviced by the IBASIC computer before aLOCAL 80903 command was
generated. In this case, thisinstrument is released from the IBASIC computer

(unassigned).

If theinstrument is then assigned to the external computer, the SRQ interrupt for
theinstrument is still retained. This may cause the external computer to respond to
an interrupt generated, but not serviced by, the IBASIC computer.

When the assignment request has been granted by the arbiter (the instrument is
currently unassigned), the instrument is assigned to the computer. Once an
instrument is assigned to an interface it cannot be assigned to another interface until
theinstrument is released with a LOCAL command from the computer which
"owns' the instrument.

An instrument is assigned to an interface when an addressed command, such as
OUTPUT 7089ss;, CLEAR 709ss, OUTPUT 809ss;, TRIGGER 809ss, etc. is issued
from the interface. If the addressed instrument is already assigned to another
computer, the request is denied.

When acomputer requests assignment of an instrument, the arbiter checks the status
of the instrument. If the instrument is assigned to another computer, the arbiter
deniesthe request until the other computer releases the instrument.

If the computer to which isinstrument is assigned is running along (or continuous)
program, the requesting computer may haveto wait indefinitely for the instrument
to be released. This program shows one way to use ON TIMEOUT so that the
requesting computer will wait a specified time before cancelling and re-initiating a
request for the instrument.

For this example, assume an Agilent E1410A DMM at secondary address 03 is
assigned to the IBASIC computer and the IBASIC computer is running the
following (downloaded) program. With this program, theinstrument is
continuously assigned (line 20) and then released (line 40) by the IBASIC computer.

5 IRE-SAVE "ASSIGN1"

10 LOOP

20 OUTPUT 80903;"MEAS:VOLTS:DC?"
30 ENTER 80903;A

40 LOCAL 80903

50 DISP A

60 END LOOP

Talk/Listen Mode Operation 6-17

NOTE

6-18 Talk/Listen Mode Operation

The above program poses no problem for instrument assignment until the external
computer requests assignment of the instrument. If the request occurs before the
instrument has been released by the IBASIC computer, the request is denied and the
external computer may "hang" indefinitely awaiting the instrument assignment.

To avoid this, the following program allows the external computer to wait for 0.1
seconds (line 110) when requesting the instrument assignment (line 120). If the
request is denied (instrument was not released by the IBASIC computer), the
program returnsto line 120 and tries the request again.

Thisloop continues until the request is granted and the instrument is assigned to
the external computer. When the instrument is assigned, the instrument makes a
DC voltage measurement and returns the result to the computer CRT. The
instrument is then rel eased from the external computer.

90 IRE-SAVE "ASSIGN2"

100 LOOP

110 ON TIMEOUT 7,.1 GOTO Line

120 Line: OUTPUT 70903;"MEAS:VOLT:DC?"
130 OFF TIMEOUT 7

140 ENTER 70903;A

150 DISP A

160 LOCAL 70903

170 END LOOP

180 END

Line 120 might better be replaced by State = SPOLL (70903). The SPOLL
operation will request data and force a timeout even though other GPIB devices on
the bus (such as an GPIB Bus Analyzer) may bein the LISTEN mode. In this case,
the OUTPUT statement will not "hang".

ON TIMEOUT can aso be used on the IBASIC side, but is not necessry since
IBASIC will wait for the arbiter to grant the request. Thisis a capability not
possible on the GPIB side.

Chapter 7 Contents

Using This Chapter 7-1

IBASIC Commands Not Supported 7-1

IBASIC Commands - Alphabetical Listing 7-2

IBASIC Commands - by Function 7-6

IBASIC Command Differences 7-10

Chapter 7

|BASIC Command Reference

Using This Chapter

This chapter shows the Agilent Instrument BASIC (IBASIC) commands supported
by the IBASIC instrument in the Agilent E1406. It includes a phabetical and
functional listings of supported IBASIC commands.

When an IBASIC command for the Agilent E1406 differs from that shown in the
Agilent Instrument BAS C Language Reference Manual, the command is described
in the IBASC Command Differences section of this chapter.

IBASIC Commands
Not Supported

The following table shows IBASIC commands described in the Agilent Instrument
BASC Language Reference Manual but not supported by the IBASIC instrument

in the Agilent E1406.

IBASIC Commands Not Supported by Agilent E1406

Command Description

DRAW Draw line on display

GCLEAR Clearsthe graphics display

MOVE Move logica/physica pensfrom current position
PEN Selects pen used for plotting

IBASIC Command Reference 7-1

IBASIC Commands

The following table shows an alphabetical listing of IBASIC commands supported

Al ph abetical Listin g py the IBASIC instrument. Unl@sindicated by a_* ent_ry, the cqmmand is
implemented by the IBASIC instrument as described in the Agilent Instrument
BASC Language Reference Manual. Seethe IBAS C Command Differences
section of this chapter for a description of * entry commands.

Command

Description

* = See IBASIC Command Differences section for command description
** = See Chapter 2 - Creating and Editing Programs for command description

ABORT*
ABS

ACS

AND

ASCII

ASN
ASSIGN
ATN

BASE

BDAT

BEEP
BINAND
BINCMP
BINEOR
BINIOR

BIT

CALL

CASE

CAT

CHR$
CLEAR*
CLEAR SCREEN
CLS

COM

CONT
CONTROL
COPY

COs
CREATE
CREATE ASCII
CREATE BDAT
CREATEDIR
CRT

DATA
DEFFN

DEG

DEL

DIM
DISABLE
DISABLE INTR
DISP

DIV

Ceases activity on specified interface

Returns absolute value of its argument
Arccosine function

Logical AND

See CREATE ASCII

Arcsine function

Assign 1/O path name and attributes

Arctangent function

Lower bound of array

See CREATE BDAT

Produces audible tone

Returns bit-by-bit, logica AND of its arguments
Returns bit-by-bit complement of its argument
Returns bit-by-bit, exclusive OR of its arguments
Returns bit-by-bit, inclusive OR of its arguments
Returns 1 or O for value of specified bit

Call specified SUB subprogram

See SELECT...CASE

Lists contents of mass storage directory
Converts numeric value to ASCI| character
Clears devices or interfaces

Clear contents of alphadisplay

See CLEAR SCREEN

Dimensions COMMON memory area

Resumes execution of PAUSed program

See PASS CONTROL

Copy file or disk

Returns cosine of angle of argument

Creates an HP-UX file

Createsan ASCI| file

Creates a BDAT file

Creates a DOS (HFS) directory

Returns 1, the device selector of the CRT display
Contains data which can be read by READ

Start of FUNCTION subprogram

Selects degrees as angle measure

Deletes selected program line(s)

Dimension REAL arrays, strings, and string arrays
Disables some event-initiated branches

Disables interrupts from an interface

Sends display itemsto CRT display

Returns integer part of quotient

7-2 IBASIC Command Reference

Command

Description

* = See IBASIC Command Differences section for command description
** = See Chapter 2 - Creating and Editing Programs for command description

DROUND
DVAL
DVAL$
EDIT**
ELSE
ENABLE
ENABLEINTR
END

END IF
END LOOP
END SELECT
END WHILE
ENTER

EOL

ERRL
ERRLN
ERRM$
ERRN
ERROR
EXOR

EXP

FN

FNEND
FOR.NEXT
FORMAT
FRACT

GET
GOsuUB
GOTO
IF..THEN
IMAGE
INITIALIZE
INPUT

INT
INTEGER
INTR

IVAL
IVALS$

KBD

LEN

LET

LGT

LIST
LOCAL*
LOCAL LOCKOUT*
LOG

LOOP
LWC$
MASS STORAGE IS

Round expression to specified number of digits
Converts character string to a REAL whole number
Converts whole number into equivaent string
Allows user to edit program

See|F.. THEN

Reenable branches suspended by DISABLE
Enable interrupts on specified interface

End of main program

See|F.. THEN

See LOOP

See SELECT...CASE

See WHILE

Input data and assign values entered to variables
See ASSIGN and PRINTER IS

Returns 1 if most recent error occurred in line
Returns program line number of most recent error
Returns error message text for most recent error
Returns number of most recent program error
See OFF ERROR and ON ERROR

Returns 1 or O, basied on logical exclusive-OR
Raises e to power of the argument

Transfer execution to user-defined function

See DEF FN

FOR...NEXT loop

See ASSIGN

Returns fractional part of value of argument
Reads ASCI| or DOS (HP-UX) file

Transfer execution to specified subroutine
Transfer execution to specified line/label
Provides conditional branching

Image specifier for ENTER, OUTPUT, PRINT, etc.
Formats mass storage media

Assigns keyboard inputs to program variables
Returns greatest integer <= expression

Declare INTEGER var and dim INTEGER arrays
See OFF INTRand ON INTR

Converts string into an INTEGER

Convertsan INTEGER into a string

Returns 2, the keyboard select code

Returns number of charactersin argument
Assigns values to variables

Returns logarithm (base 10) of argument

Lists program or definitions in memory

Returns specified devicesto local state

Prevents returning specified deviceto locd state
Returns logarithm (base €) of argument

Repeat loop until EXIT IF statement islogicaly true
Replace uppercase with lowercase characters
Specifies system mass storage device

IBASIC Command Reference 7-3

Command

Description

* = See IBASIC Command Differences section for command description
** = See Chapter 2 - Creating and Editing Programs for command description

MAX
MAXREAL
MIN
MINREAL
MOD
MODULO
MSI

NEXT

NOT

NUM

OFF CYCLE*
OFF ERROR
OFF INTR
OFF KEY
OFF TIMEOUT
ON CYCLE*
ON ERROR
ON INTR

ON KEY

ON TIMEOUT
OR

OUTPUT
PASS CONTROL
PAUSE

Pl

POS

PRINT
PRINTER IS
PRIORITY
PROUND
PRT

PURGE

RAD
RANDOMIZE
RANK

READ
READIO*
REAL
RECOVER
REM
REMOTE*
REN
RENAME
REPEAT...UNTIL
RE-SAVE
RESTORE
RETURN
REV$

RND

Returns largest value in list of arguments

Returns largest REAL number available

Returns smallest valuein list of arguments
Returns smallest REAL number available
Returns the remainder of adivision

Returns integer remainder of adivision

See MASS STORAGE IS

See FOR...NEXT

Returns 1 if argument is O, returns 0 otherwise
Returns ASCI| value of first character in argument
Cancels branches enabled with ON CYCLE
Cancels branches enabled with ON ERROR
Cancels branches enabled with ON INTR
Cancels branches enabled with ON KEY

Cancels branches enabled with ON TIMEOUT
Enables branch when specified time has elapsed
Enables branch when error is generated

Enables branch when interrupt is generated
Enables branch when softkey is pressed

Enables branch when 1/0 timeout occurs

Returns 1 or O - based on inclusive-or of arguments
Outputs items to specified destination

Pass Active Controller function to GPIB device
Suspends (pauses) program execution

Returns approximate value for pi

Returns first position of substring within string
Sendsitems to PRINTER IS device

Specifies system printing device

See SYSTEM PRIORITY

Returns argument value, rounded to power-of-ten
Returns 701, default selector for external printer
Deletes afile from a directory

Selects radians as angle measure

Selects a seed for the RND function

Returns number of dimensionsin an array

Reads values from DATA statements

Provides additional 1/0 reading capabilities
Reserves storage for REAL variables and arrays
See ON... statements

Allows comments in a program

Places specified device(s) in REMOTE state
Renumber program lines for program in memory
Changes file or directory name

Loop until the UNTIL statement islogicaly true
Creates/rewrites ASCI| or HP-UX file

Specifies DATA statement using with next READ
Return execution to line following invoking GOSUB
Returns string formed by reversing char sequence
Returns a pseudo-random number 0 <num<1

7-4 IBASIC Command Reference

Command

Description

* = See IBASIC Command Differences section for command description
** = See Chapter 2 - Creating and Editing Programs for command description

ROTATE
RPT$

RUN

SAVE
SCRATCH
SECURE
SELECT...CASE
SGN

SHIFT

SIN

SIZE

SPOLL*
SQRT

STEP

STOP

SuB
SUBEND
SUBEXIT
SYSTEM ID
SYSTEM PRIORITY
SYSTEM$
TAB

TABXY
TAN
TIMEDATE
TIMEOUT
TRIGGER*
TRIM$
UNTIL

UPC$

USING

VAL

VAL$

WAIT
WHILE
WIDTH
WILDCARDS
WRITEIO*

Returns integer value of shift with wrap-around
Returns string repeated specified number of times
Begins program execution at specified line
Creates ASCII or HP-UX file and copieslinesto file
Erases all or selected portions of memory

Protects program lines so they cannot be listed
Provide conditiona execution of program segments
Returns 1, 0, or -1 for pos, zero, neg arguments
Returns integer value of shift without wrap-around
Returns the sine of the argument

Returns number of elements of array dimension
Returns serial poll response of selected device
Returns square root of argument

See FOR...NEXT

Terminates execution of program

First statement in a SUB subprogram

See SUB

Allows multiple exits from a SUB subprogram

See SYSTEM$

Sets system priority to specified value

Returns system status and configuration

See PRINT and DISP

See PRINT

Returns tangent of angle of argument

Returns value of real-time clock

See OFF TIMEOUT and ON TIMEOUT

Sends TRIGGER message to selected devices
Returns string without leading/trailing ASCI| spaces
See REPEAT...UNTIL

Replace lowercase with uppercase characters

See DISP, ENTER, LABEL, OUTPUT, and PRINT
Converts string expression to numeric vaue
Returns string representation of argument value
Wait before executing next statement

Execute loop aslong as WHILE istrue

See PRINTER IS

When enabled, use to represent file names
Provides additional 1/0 write capability

IBASIC Command Reference 7-5

IBASIC Commands
by Function

The following table shows a functional grouping of IBASIC commands supported
by the IBASIC instrument. Unlessindicated by a* entry, thecommand is
implemented by the IBASIC instrument as described in the Agilent Instrument

BASC Language Reference Manual. Seethe IBAS C Command Differences
section of this chapter for a description of * entry commands. See Chapter 10 of
the Agilent Instrument BAS C Programming Techniques Manual for further
information on IBASIC commands by function.

General Math Operations

Category Command Description

Relationa = Equality

Operators <> Inequality
< Lessthan
<= Less than or equal to
> Greater than
>= Greater than or equal to

General Math | + Addition operator

Functions - Subtraction operator
X Multiplication operator
/ Division operator
n Exponentiation operator
ABS Returns agrument absolute value
DIV Returns integer portion of division
DROUND Returns rounded value of expression
EXP Rai ses base e to specified power
FRACT Returns fractional part of expression
INT Returns integer part of expression
LET Assigns valuesto variables
LGT Returns logarithm (base 10) of argument
LOG Returns logarithm (base) of argument
MAX Returns largest valuein list of arguments
MAXREAL Returns largest number available
MIN Returns smallest valuein list of arguments
MINREAL Returns smallest number available
MQOD Returns remainder of integer division
MODULO Returns the modulo of division
Pl Returns approximation of pi
PROUND Returns value rounded to power of ten
RANDOMIZE | Modifies seed used by RND
RND Returns pseudo-random number
SGN Returns sign of argument
SQRT (or Returns square root of argument
SQR)

7-6 IBASIC Command Reference

General Math Operations (cont’d)

Category Command Description
Binary BINAND Returns bit-by-bit logical -and of two args
Functions BINCMP Returns bit-by-bit complement of argument
BINEOR Returns bit-by-bit exclusive-or of two args
BINIOR Returns bit-by-bit inclusive-or of two args
BIT Returns state of specified bit in argument
ROTATE Returns shifted value, with wraparound
SHIFT Returns shifted value, without wraparound
Trigonometric | ACS Returns the arcosine of argument
Functions ASN Returns the arcsine of argument
ATN Returns the actangent of argument
CcOos Returns cosine of argument
DEG Sets degrees as unit of angle measurement
RAD Sets radians as unit of angle measurement
SIN Returns sine of argument
TAN Returns tangent of argument
Array/String/Logical Operations
Category Command Description
Array BASE Returns lower bound of array dimension
Operations RANK Returns number of dimensionsin array
SIZE Returns number of elementsin array dim
String & Concatenates two string expressions
Operations CHR$ Converts numeric value to ASCII character
DVAL Converts alternate-base to numeric value
DVALS$ Converts numeric value to alternate-base
IVAL Converts alternate-base to INTEGER number
IVALS$ Converts INTEGER number to aternate-base
LEN Returns number of charactersin string
LWC$ Returns lowercase val ue of string
NUM Returns decimal value of first char in string
POS Returns position of string in string expression
REVS$ Reverses order of charactersin string
RPTS$ Repeats charactersin string number of times
TRIM$ Removes leading/trainling blanks from string
UPC$ Returns uppercase value of string
VAL Converts string of numerals to numeric value
VALS$ Returns string representing numeric value
Logica AND Returns 1 or 0 based on logical AND of 2 args
Operators EXOR Returns 1 or 0 based on exclusive-or of 2 args
NOT Returns 1 or 0 based on complement of arg
OR Returns 1 or 0 based on inclusive-or of 2 args

IBASIC Command Reference 7-7

Program Control Operations

Category Command Description
Entry/ EDIT** Allows user to edit program
Editing LIST Lists program lines to system printer
REM and ! Allows comments on program lines
REN Renumber lines for program in memory
SECURE Protects program lines - cannot be listed
Debugging ERRL Indicates if error occurred on specific line
ERRLN Returns line number of most recent error
ERRM$ Returnstext of last error message
ERRN Returns most recent program execution error
Program CALL Transfer program execution to subprogram
Control CONT Resumes execution of PAUSed program
DEF FN/FNEND Defines bounds of function subprogram
END Stops program execution - marks end of prog
FN Calls user-defined function
FOR...NEXT Defines loop to be repeated number of times
GOSsuUB Transfers program to specified subroutine
GOTO Transfers program to specified line
IF. THEN ELSE Conditional execution of program segment
LOOP/EXIT IF/END LOOP | Looping with conditional exit
PAUSE Suspends program execution
REPEAT...UNTIL Execute prog segment until condition istrue
RETURN Transfer back to main prog from subroutine
SELECT...CASE Execute one program segment of several
STOP Terminates program execution
SUB/SUBEND Defines bounds of a subprogram
SUBEXIT Transfer control from subprog
WAIT Wait specified number of seconds
WHILE Execute prog segment whle cond is true

** = See Chapter 2 - Creating and Editing Programs for command description

7-8 IBASIC Command Reference

Instrument Control Operations

Category Command Description
Device ASSIGN Assigns I/0 path to mass storage or devices
I nput/Output BEEP Produces audible tone
CRT Returns device selector or CRT
DATA Specifies data accessible via READ
DISP Outputsitemsto CRT display
ENTER Inputs datafrom device, file, or string
IMAGE ENTER, OUTPUT, DISP, PRINT formats
INPUT Inputs data from keyboard to variables
KBD Returns device selector of the keyboard
OUTPUT Outputsitemsto device, file, or string
PRINT Outputsitemsto PRINTER IS device
PRINTER IS Specifiesdevicefor PRINT, CAT, LiST
PRT Returns device selector of external printer
READ Inputs datafrom DATA liststo variables
READIO* Provides additional 1/O read capabilities
RESTORE READ accesses specified DATA statement
SYSTEM$ Returns system status/configuration
TAB Moves print position to specified point
TABXY Specifies print position on interna CRT
TIMEDATE Returns value of real-time clock
WRITEIO* Provides additional I/O write capabilities
Interface ABORT* Terminate interface activity
Control CLEAR* Places specified devices in known state
CLEAR SCREEN Clear contents of alpha display
CLS See CLEAR SCREEN
LOCAL* Returns specified devicesto LOCAL atate
LOCAL LOCKOUT* Disables front-panel control of devices
PASS CONTROL Pass Active Controller function to device
REMOTE* Places specified devicesin REMOTE state
SPOL L* Returns Seria Poll byte from device
TRIGGER* Sends Trigger message to specified devices
Event-Initiated | ENABLE/DISABLE Enabl es/disables event-initiated branching
Branching ENABLE INTR/DISABLE Enables/disables interrupts set by ON INTR

ON CYCLE*/OFF CYCLE*
ON ERROR/OFF ERROR

ON KEY...LABEL/OFF KEY
ON TIMEOUT/OFF
TIMEOUT

SYSTEM PRIORITY

Enabl es/disables interrupts set by ON CYCLE
Sets up event-initiated branch for prog error

Sets up event-initated branch for softkeys
Sets up event-initiated branch for I/O timeout
Setsmin priority level for event-init branches

* = See IBASIC Commend Differences section for command description

IBASIC Command Reference 7-9

Mass Storage/Memory Operations

Category Command Description
Mass ASSIGN Assign 1/O path and attributes to afile
Storage CAT List mass storage directory contents
COPY Copy mass storage files and volumes
CREATE Creates HP-UX file on mass storage media
CREATE ASCII Creates ASCII file on mas storage media
CREATE BDAT Creates BDAT file on mass storage media
CREATEDIR Creates DOS (HFS) directory on mass media
GET Reads ASCII fileinto memory as a program
INITIALIZE Formats mass storage media (Lif directory)
MS Specifies defaul t mass storage device
PURGE Deletesfile from directory
RENAME Changesafile€'s name
SAVE/RE-SAVE Creates/rewrites ASCII or HP-UX file
WILDCARDS When enabled, useto represent file names
Memory COM Dimension, reserve memory for common area
Allocation DIM Dimension, reserve memory for REAL var
INTEGER Dimension, reserve memory for INTEGER
REAL var
SCRATCH Dimension, reserve memory for full-prec var
Erase all or selected portions of memory

IBASIC Command
Differences

This section describes the IBASIC commands supported by the IBASIC instrument
in the Agilent E1406 which are not described in the Agilent Instrument BASC

Language Reference Manual or have a description different from that shown in the
Agilent Instrument BAS C Language Reference Manual.

Each command description assumes the command is issued from the IBASIC
computer.

NOTE See Chapter 1in the Agilent Instrument BASC Language Reference Manual for a
description of IBASIC command structure and syntax drawings.

7-10 IBASIC Command Reference

ABORT

Example Statement

Semantics

CLEAR

Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interfaces (select code 8 or 16), ABORT does nothing, since no
operations are occurring except under IBASIC control. For the GPIB interface
(select code 7) (System Controller mode only), ABORT ceases activity on the
GPIB interface.

interface

ABORT select code
e
[tem Description Range
interface select code | numeric expression, rounded to | 7 for GPIB and 8 for IBASIC
an integer
I/O path name name assigned tothe IBASIC | -
or GPIB interface

ABORT 7

For System Controller mode ONLY, ceases activity on GPIB
interface (select code 7)

Executing ABORT ceases activity on the specified interface - other interfaces may
not be specified. If the IBASIC computer isthe System controller but is not
currently the Active Controller, executing ABORT 7 causes the IBASIC computer
to assume active control. See the ABORT command in the Agilent Instrument
BASC Language Reference Manual for a summary of GPIB bus actionsfor the
ABORT command.

Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interfaces (select code 8 or 16), when the instrument(s) are
assigned to the IBASIC computer, CLEAR 8 or CLEAR 16 setsall acquired
instruments to a pre-defined, instrument-dependent state., while CLEAR 809ss
sets the acquired instrument at secondary address ss to a pre-defined,
instrument-dependent state.

IBASIC Command Reference 7-11

For the GPIB interface (select code 7) (System Controller mode only), CLEAR 7
sets al external GPIB devicesto a pre-defined, instrument-dependent state, while
CLEAR 7ppss setsthe external GPIB instrument at primary address pp and
secondary address ss to a pre-defined, device-dependent state.

CLEAR e) 1/g,nath
device
selector
[tem Description Range
[/O path name | name assigned to adevice or devices any vaid name (see ASSIGN)
device selector | numeric expression, rounded to an integer | (see Glossary)

Example Statements

Comments

CLEAR 80901
Clearstheinstrument at secondary address 01, if the instrument
isassigned to IBASIC

CLEAR 722

For System Controller mode only, clears external GPIB
instrument at address 22

The IBASIC computer must be the active controller to executea CLEAR 7
command. When interface 8 is specified, the CLEAR issent to all devices which
are assigned to IBASIC (owned by IBASIC) and are addressed to listen.

CLEAR 8 and CLEAR 16 do thefollowing to an instrument owned by IBASIC:

» Clears the input buffer and output queue.

* Resets the command parser.

» Disablesany operation that would prevent * RST execution.

» Disablesthe Operation Complete and Operation Complete Query modes.

CLEAR 8 and CLEAR 16 do not affect:

* Any settings or stored datain the instrument except the Operation Complete
and Operation Complete Query modes.

* Any instrument operation in progress except as stated above.

» The Status Byte Register, except to clear the Message Available (MAV) bit
as aresult of clearing the Output Queue.

See the CLEAR command in the Agilent Instrument BAS C Language Reference
Manual for a summary of GPIB bus actions for the CLEAR command.

CLEAR9and CLEAR 21 - 27:

For the Serial interfaces, CLEAR clears the receive and transmit buffers, but does
not affect baud rate or other configuration settings.

7-12 IBASIC Command Reference

LOCAL Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interfaces (select code 8 and 16), LOCAL 8 or LOCAL 16 places
all instruments which are assigned to IBASIC in the LOCAL state, while LOCAL
809ss or 16X X]XX places an assigned instrument at secondary address ssin the
LOCAL state. For message based devicesthe LOCAL command also issues a
word-serial Clear Lock.

For the GPIB interface (select code 7) (System Controller mode only), LOCAL 7
places al external GPIB devicesinthe LOCAL state, while LOCAL 7ppss places
an external GPIB device a primary address pp and secondary address ssin the
LOCAL sate.

O L

device
selector

Item

Description Range

[/O path name

name assigned to adevice or devices any vaid name (see ASSIGN)

device sdlector

numeric expression, rounded to an integer | (see Glossary)

Example Statements

Semantics

LOCAL 7
For System Controller mode only, placesall external GPIB
devicesin the LOCAL state.

LOCAL 80901

Places an internal instrument at secondary address 01 in the
LOCAL state

If only interface select code 8 isselected, all instruments on the interface
which are assigned to IBASIC are returned to their LOCAL state and any
LOCAL LOCKOUT iscancelled.

If only interface select code 7 is selected (System Controller mode only),
al GPIB deviceson the interface are returned to their LOCAL state and
any LOCAL LOCKOUT iscancdled.

If aprimary addressisincluded, the LOCAL command is sent to a specific
listener and LOCAL LOCKOUT is not disabled for any other instrument or
device.

For interface select code 8 (IBASIC), when aLOCAL 8 command is sent,
all instruments previously assigned to the IBASIC computer are rel eased
(unassigned). However, aREMOTE 8 must be sent following the LOCAL
command for a subsequent LOCAL command to release assigned
instrument(s). For example, LOCAL 80903 releases an instrument at
secondary address 03 if the instrument was previously assigned to IBASIC.
Seethe LOCAL command in the Agilent Instrument BAS C Language
Reference Manual for a summary of GPIB bus actions for the LOCAL
command.

IBASIC Command Reference 7-13

LOCAL LOCKOUT Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interface (select code 8), executing LOCAL LOCKOUT prevents
al instruments that are assigned to IBASIC and are set to the REMOTE state from
being operated from their virtual front panels on the terminal.

For the GPIB interface (select code 7), executing LOCAL LOCKOUT prevents all
external GPIB devices which are set to the REMOTE state from being operated
from their own front panels.

(‘LocaL Lockout —ef a0ter acs,
@ I1/0 path
name
[tem Description Range
I/O path name name assigned to an interface select code | any valid name (see ASSIGN)

interface select code

numeric expression, rounded to an integer | 7 for GPIB and 8 for IBASIC

Semantics .

7-14 IBASIC Command Reference

The IBASIC computer must be the Active Controller to execute LOCAL
LOCKOUT. LOCAL LOCKOUT does not cause interface reconfiguration
but issues a universal command which isreceived by al devices on the
interface, whether addressed or not. (Some Agilent E1406 User Interface
operations such as menu control and display scrolling are still activein Local
Lockout mode.)

If an internal instrument isin the LOCAL state when LOCAL LOCKOUT is
sent, the instrument remainsin the LOCAL state. LOCAL LOCKOUT does
not become effective until the instrument receives aREMOTE message and
isaddressed to listen. If an instrument is in the REMOTE state when
LOCAL LOCKOUT issent, Agilent E1406 front panel control is
immediately disabled for that instrument.

After executing LOCAL LOCKOUT viathe IBASIC interface (select code
8), you can enable front panel keyboard control by sending the LOCAL 8
command or by cycling power. The LOCAL 809ss (ss = secondary address)
command enables the front panel for that instrument, but a subsequent
REMOTE command disablesit.

Sending LOCAL 8 removes LOCAL LOCKOUT for al instruments
assigned to IBASIC and places them in the LOCAL state (releases the
instruments). When theinstrument is assigned to IBASIC, sending LOCAL
809ss (ss = secondary address) places the selected instrument in the
LOCAL state (rel eases the instrument).

For System Controller mode only, sending LOCAL 7 removes LOCAL
LOCKOUT for al external GPIB devices and places them in the LOCAL
state. Sending LOCAL 709ss (ss = secondary address) places selected
external GPIB devicesin the LOCAL state.

OFF CYCLE Keyboard Executable No
Programmable Yes
Inan IF...THEN... Yes

OFF CYCLE

This statement cancels event-initiated branches previously defined and enabled by
an ON CY CLE statement.

Example OFF CYCLE
Statement Cancels event-initiated branches previously defined with ON
CYCLE

Semantics When OFF CYCLE is executed, any pending ON CY CLE branchesfor the
affected interface(s) are lost and further ON CY CLE events are ignored.

ON CYCLE Keyboard Executable No
Programmable Yes
Inan IF...THEN... Yes

This statement defines and enables an event-initiated branch to be taken each time
the specified number of seconds has elapsed.

@N CYCLE)——{ seconds }7 ~@—
O
subg;ﬁgr‘am
[tem Description Range
seconds numeric expression, rounded to 0.01 through 167772.16
the nearest 0.01 second
priority numeric expression, rounded to an | 1 through 15
integer. Default =1
line label name of aprogram line any vaid name
line number integer constant identifying a 1 through 32 767
program line
subprogram name name of a SUB subprogram any vaid name
Example Statements ON CYCLE 1 GOTO 1200

Go to line 1200 every second, with (default) software priority 1
ON CYCLE 3600, 12 CALL Report
Call subprogram Report every hour, with software priority 12

Semantics » Themost recent ON CYCLE (or OFF CY CLE) definition overrides any
previous ON CY CLE definition. If the new ON CY CLE definition occursin

IBASIC Command Reference 7-15

adifferent context from the previous ON CY CL E definition, the old
definition is restored when the calling context is restored, but the time value
of the new ON CY CLE definition remainsin effect.

» Thehighest software priority for ON CYCLE is 15 which isless than the
(fixed) priority of 16 for ON TIMEOUT and 17 for ON ERROR. CALL
and GOSUB service routines get the priority specified in the ON... statement
which set up the event-initiated branch. The system priority is not changed
when a GOTO branch is taken.

» Any specified line label or line number must be in the same context and the
ON CYCLE statement. CALL and GOSUB will return to the next line that
would have executed if ON CY CLE had not occurred, and the system
priority is restored to that existing before ON CY CLE.

* RECOVER forces the program to go directly to the specified linein the
context containing the ON CY CLE statement. When RECOVER forcesa
change of context, the system priority isrestored to that existing in the
origina (defining) context at the time the original context was exited.

* CALL and RECOVER remain active when the context changesto a
subprogram, unless the change in context is caused by a
keyboard-originated call. GOSUB and GOTO remain active when the
context changes to a subprogram, but the branch cannot be taken until the
calling context is restored.

* ONCYCLEIs disabled by DISABLE and deactivated by OFF CYCLE. If
the cycle value is so short that the computer cannot service it, the interrupt
from the event islost.

READIO Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

READIO (and WRITEIO) provide interface control functions not available with
ENTER and OUTPUT. For IBASIC, READIO reads the contents of the specified
hardware register for the:

» GPIB interface (select code 7)

» IBASIC interface (select code 8) (VXI device registers)

» Built-in RS-232C interface (select code 9)

* Agilent E1324A RS-232C/422 interfaces (select codes 21-27)

READIO also reads the specified byte or word of IBASIC memory (select codes
9826 and -9826). Y ou can use parameter 9827 to read the address of avariablein
IBASIC memory.

NOTE Unexpected results may occur with select codes 9826 and 9827.

7-16 IBASIC Command Reference

interface register
Aeao10) () O O

[tem Description Range
select code numeric expression, rounded to | 1 through 31; +9826;
an integer 9827
register number or numeric expression, rounded to | hardware-dependent
memory address an integer
Example Statements PRINT "VXI Card LADD, Reg#" = READIO(8, Ladd*256 +Reg)

Display contents of register | for instrument at logical address
LADD, whereregister address = 256*LADD + Register#

Write_status = READIO(9,2)

Assign the valuein register 2 of the built-in RS-232 port to
variable

Peek_byte = READIO(9826,Mem_addr)
Read a byte of data from IBASC memory address Mem_addr

Mem_addr = READIO(9827,Array(l))
Read address of variable in IBASC memory

Semantics READIO and WRITEIO are added to provide 1/0O functions not available with
OUTPUT and ENTER. For IBASIC, READIO can be used with:

» GPIB Interface (select code 7)

» IBASIC Interface (select code 8) (VX device registers)
» RS-232/422 Serial Interfaces (select codes 9, 21-27)

» IBASIC Memory (select codes 9826, 9827)

Using READIO With GPIB Interface (Select Code 7)
Touse READIO from the IBASIC computer viathe GPIB interface (select code 7),

the Agilent E1406 must be set for System Controller mode. The READIO registers
for the GPIB interface follow.

READIO Registers for GPIB Interface

Register Title
3 Interrupt Enable/Request Status
4 Interrupt Status
5 Controller Status and Address
17 Interrupt Status O (*)
19 Interrupt Status 1 (*)
21 Interface Status
23 Control-Line Status
29 Command Pass-Through
31 Data-Line Status(*)

* = READIO operation changes state of the interface

GPIB READIO Register 3 Interrupt Enable/Request Status

IBASIC Command Reference 7-17

Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupt Interrupt X X X X X X
Enabled Requested
Vaue=128 | Vaue=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1
X = Bit not implemented on internal GPIB (interface select code 7)
GPIB READIO Register 4 Interrupt Status
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Active Controller Parallel Pall My Tak My Listen EOI Received SPAS Remote/ Taker/
Configu- Address Address Local Change Listener
ration Change Received Received Address
Change
Value=-32768 | Value=16384 | Value=8192 | Value=4096 | Value=2048| Value=1024| Vaue=512 | Vaue=256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Hand-shake | Unrecog- Secondary Clear Unrecognize| SRQ X
Received Error nized Command Received d Addres Received
Universa While sed Com-
Command Addressed mand
Value=128 Value=64 Vaue=32 Vaue=16 Value=8 Vaue=4 Value=2 Value=1
GPIB READIO Register 5 Controller Status and Address
Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
System Not Active X X X X X X
Controller | Controller
Vaue=128 | Vaue=64 Vaue=32 | Value=16 | Vaue=8 | Value=4 | Value=2 | Value=1

Bit 7 is set (1) if the interface is the System Controller.
Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is
the Active Controller.
X = Bit not implemented on internal GPIB (interface select code 7).

7-18 IBASIC Command Reference

GPIB READIO Register 17 MSB of Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MSB LSB Byte Ready End SPAS Remote My
Interrupt Received for Next Detected /Local Address
Interrupt Byte Change Change
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1

Bit 7 set (1) indicates an interrupt has occurred whose cause can be determined by
reading the contents of this register.

Bit 6 set (1) indicates an interrupt has occurred whose cause can be determined by
reading Interrupt Status Register 1 (READIO Register 19).

Bit 5 set (1) indicates a data byte has been received.

Bit 4 set (1) indicates this interface is ready to accept the next data byte.
Bit 3 set (1) indicates an End (EOI with ATN=0) has been detected.

Bit 2 set (1) indicates a Remote/Local State change has occurred.

Bit O set (1) indicates a change in My Address has occurred.

GPIB READIO Register 19 LSB of Interrupt Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger Handshake | Unrecognized | Secondary Clear My Address SRQ IFC
Received | Error Command Command Received | Received (MLA | Received | Received
Group While Addressed or MTA)
Vaue=128 Value=64 | Vaue=32 Value=16 Vaue=8 | Vaue=4 Vaue=2 | Value=1

Bit 7 set (1) indicates a Group Execute Trigger command has been received.
Bit 6 set (1) indicates an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates an unidentified command has been received.

Bit 4 set (1) indicates a Secondary Address has been sent while in the
extended-addressing mode.

Bit 3 set (1) indicates the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates My Address has been received.

Bit 1 set (1) indicates a Service Request has been received.

Bit O set (1) indicates the Interface Clear message has been received.

IBASIC Command Reference 7-19

GPIB READIO Register 21

Interface Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REM LLO ATN True LPAS TPAS LADS TADS L SB of
Last
Address
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1
Bit 7 set (1) indicates this interface is in the Remote State.
Bit 6 set (1) indicates this interface is in the Local Lockout State.
Bit 5 set (1) indicates the ATN signal line is true.
Bit 4 set (1) indicates this interface is in the Listener-Primary-Addressed State.
Bit 3 set (1) indicates this interface is in the Talker-Primary-Addressed State.
Bit 2 set (1) indicates this interface is in the Listener-Addressed State.
Bit 1 set (1) indicates this interface is in the Talker-Addressed State.
Bit O set (1) indicates this is the least-significant bit of the last address recognized by
this interface.
GPIB READIO Register 23 Control-Line Status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATNTrue | DAV Truel NDAC' | NRFD! | EOI True| SRQ? | IFC True | REN
True True True True
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1
A set bit (1) indicates the corresponding line is currently true, while a 0 indicates the
line is currently false. =~ Only if addressed to TALK, otherwise not valid.
2 Only if Active Controller, else not valid.
GPIB READIO Register 29 Command Pass-Through
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1

This register can be read during a bus holdoff to determine which Secondary
Command has been detected.

7-20 IBASIC Command Reference

GPIB READIO Register 31 Bus Data Lines

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIOL
Value=128 | Vaue=64 | Value=32 | Value=16 | Value=8 | Value=4 | Vaue=2 | Vaue=1

A set bit (1) indicates the corresponding GPIB data line is currently true, while a 0
indicates the line is currently false.

Using READIO With IBASIC Interface (Select Code 8)

For READIO and the IBASIC interface, the form to read the value of aregister on
aninstrument isRead_addr = READIO (8, Ladd*256 + Reg#) where Ladd is
the Logical Address of the instrument, and Reg# is the register number for the
instrument. A 16-bit INTEGER number is returned.

Using READIO With Serial Interfaces (Select Codes 9, 21-27)

To use READIO with the RS-232/422 serial interfaces, the built-in RS-232 port
must first be assigned to IBASIC with DIAG:COMM:SER:OWNER IBASIC sent
to the System instrument and/or the Agilent E1324A plug-in module (s) must be
assigned to IBASIC by setting the LADDR switch(es) to 241, 242, ..., 247.

Then, the first Agilent E1324A module (module #1) has LADD 241 and select code
21, the second module has LADD 242 and select code 22,...,and the seventh module
has LADD 247 and select code 27. Notethat LADDs must be sequentia and
contiguous. For example, you cannot use LADD 242 without having LADD 241.

With READIO/WRITEIO, the program can send an RS-232C BREAK signa and
read the status of the interface. (This cannot be done with ENTER/OUTPUT.) The
READIO register map for the RS-232/422 seria interfaces (select codes 9, 21-27)
follows.

IBASIC Command Reference 7-21

READIO Register Map for Serial Interfaces

Reg # Title Returns

0 Card Identification O for built-in and plug-in modules

1 Read Data Register Decimal code for character returned or -1 if no
character was received (does not wait for a
character).

2 Write Data Status 0if the last WRITEIO to WRITEIO Register 1 was
successful, 1 if unsuccessful.

3 Port Status Status of the seria port (changes state of interface) -
see Bit Map following.

4 ENTER Status Status of the last ENTER statement. See Bit Map
following.

5 Port Configuration 32-hit quantity reflecting current port configuration.

6 Buffer Size Size of the port’s I/O buffers.

Bit Map for READIO Registers 3 and 4

Bit I nformation Bit I nformation Bit I nformation
15-1211 | Unused 7 Parity Error 3 DSR Line Status
10 Buffer Error* 6 Overrun Error 2 CTSLine Status
9 Device Error** 5 DCD Line Status 1 RTS Line Status
8 Break Error*** 4 RI Line Status 0 DTR Line Status

Framing Error

* = Recelved data buffer overflow
** = Errors not covered by other bits
*** = Break was received (framing error often present)

Using READIO With IBASIC Memory (Select Codes 9826, 9827)

To use READIO with the IBASIC memory, use select code 9826 to read ("Peek”) a
byte of datafrom aregister or use select code -9826 to read aword of datafrom the
register. Select code 9827 is used for the address of avariable or array element .

For example, Peek_byte=READIO (9826, Mem_address) reads abyte of datafrom
memory while Peek_word=READIO (-9826 , Mem_address) reads aword of data
from memory. An exampleway to find the address of an array in IBASIC memory
is

10 INTEGER A(1:10)
20 Addr = READIO (9827,A(1))

7-22 IBASIC Command Reference

REMOTE

Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interface (select code 8), REMOTE 8 places all addressed
instruments inthe REMOTE state. REMOTE 16 is not supported. REMOTE
809ss and REMOTE 16[XX]XX send the word-serial Set Lock command.

For the GPIB interface (select code 7) (System Controller mode only), REMOTE 7
places al external GPIB devices having remote/local capabilities in the REMOTE
state.

interface
REMOTE @ select code

1/0 path
name
[tem Description Range
[/O path name name assigned to adevice or devices any vaid name (see ASSIGN)
interface select code | numeric expression, rounded to an integer | 7 for GPIB, 8 for IBASIC

Example Statement

Semantics

REMOTE 722

For System Controller mode only, sets external GPIB device at
primary address 22 to REMOTE state

If only the interface select code (7 or 8) is specified, the REMOTE state for al
devices ontheinterface having remote/local capabilitesis enabled. If primary
addressing is used, only the specified devices are placed in the REMOTE state.

When the IBASIC computer isthe System Controller, or at power-on or reset, or
when ABORT is executed interface devices are automatically enabled for the
REMOTE state and switch to REMOTE when they are addressed to listen.

Seethe REMOTE command in the Agilent Instrument BAS C Language Reference
Manual for a summary of GPIB bus actions for the REMOTE command.

IBASIC Command Reference 7-23

SPOLL Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC interface (select code 8 or 16), SPOLL returns an integer
containing the Serial Poll response from an addressed internal instrument. SPOLL
returns the weighted sum of al bitswhich are set in the addressed instrument’s
Status Byte Register.

For the GPIB interface (select code 7) (System Controller mode only), SPOLL
returns an integer containing the Serial Poll response from an addressed external
GPIB device. SPOLL returns the weighted sum of al bits which are set in the
addressed instrument’s Status Byte Register.

NOTE See the appropriate Agilent 75000 Plug-1n Module User’s Manual for a description
of the instrument’s Status Byte Register. Seethe appropriate device programming
manual for adescription of external GPIB device Status Byte Registers.

I/0 path
name

selector

[tem Description Range
[/O path name | name assigned to a device any valid name (see ASSIGN)
device selector | numeric expression, rounded to an | must include a primary address
integer (see Glossary)
Example Statements Dvm_stat=SPOLL(80901)

Sends Serial Pall to internal instrument at secondary address 01
and clears bit 6 (RQS) of the instrument’s Status Byte Register

Ext_stat=SPOLL(722)

For System Controller mode only, sends Serial Poll to external
GPIB device at primary address 22 and clears bit 6 (RQS) of the
device's Satus Byte Register

Semantics The SPOLL command, like the * STB? Common Command, returns the weighted
sum of al set bitsin an instrument’s or device's Status Byte Register. However,
SPOLL differsfrom*STB?in that SPOLL clearsbit 6 (RQS) of the Status Byte
Register, while* STB? does not clear bit 6 of the register.

The IBASIC computer must be the Active Controller to execute SPOLL on
interface 7.

See the SPOLL command in the Agilent Instrument BAS C Language Reference
Manual for a summary of GPIB bus actions for the SPOLL command.

7-24 IBASIC Command Reference

TRIGGER

Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

For the IBASIC select code 8 interface executing TRIGGER 809ss triggers the
instrument at secondary address=ss.

For the IBASIC select code 16 interface TRIGGER 16[X X]X X sends aword-serial
trigger command to a selected device.

For the GPIB interface (select code 7 - System Controller mode only), executing
TRIGGER 7 triggersall externa GPIB devicesthat are addressed to listen, while
executing TRIGGER 7ppss triggers the external GPIB device at primary address pp

and secondary address ss.
I1/0 path
name
..

TRIGGER

selector

[tem Description Range
[/O path name | name assigned to a device or devices any valid name (see ASSIGN)
device selector | numeric expression, roundd to an (see Glossary)

integer

Example Statements

Semantics

TRIGGER 80901
Sends a trigger to aninternal instrument at secondary address 01
TRIGGER 70922

For System Controller mode ONLY, sendsatrigger to an
external GPIB device at secondary address 22

If only the interface select code (7 or 8) is specified, al instruments or deviceson
that interface that are addressed to listen are triggered. If aprimary or secondary
address is used, only the addressed instrument or deviceis triggered.

TRIGGER triggersan internal instrument or external GPIB devicewhen all the
following conditions are true:

* Theinstrument’s or device's trigger sourceisset to BUS (TRIG:SOUR BUS
command)

» Theinstrument or device isin the Wait For Trigger state.

* Theinstrument or deviceis addressed to listen.

See the TRIGGER command in the Agilent Instrument BASC Language Reference
Manual for asummary of GPIB bus actions for the TRIGGER command.

IBASIC Command Reference 7-25

WRITEIO Keyboard Executable Yes
Programmable Yes
Inan IF...THEN... Yes

WRITEIO (and READIO) providesinterface functions not available with ENTER
and OUTPUT. For IBASIC, WRITEIO writesdatato the specified hardware
register for the:

» GPIB interface (select code 7)

» IBASIC interface (select code 8) (VXI instrument registers)

* Built-in RS-232C interface (select code 9)

» Agilent E1324A RS-232C/422 interfaces (select codes 21-27).

WRITEIO also writes a specified byte or word to IBASIC memory (select codes
9826 and -9826). Use parameter 9827 to execute M C 68000 aobject code in memory.

interface register register
CHEL) o INENE 0 © O

[tem Description Range

select code nuMeric expression, 1 through 31, -31 through
rounded to an integer -1; £9826; 9827

register # or memory address | numeric expression, 2% through +231
rounded to an integer (hardware-dependent)

register or memory data numeric expression, -231through +231.1
rounded to an integer

Example Statements WRITEIO 8,Ladd*256+Reg#;Set_pctl

Write data to register of instrument, whereregister address =
LADD*256 + Reg#

WRITEIO 9,1;Data_ser

Write data to register 1 of built-in RS-232C serial port
WRITEIO 9827,Jsr_address;DO_data

Use for CSUB execution

Semantics Sincethe Agilent E1406 does not support STATUS and CONTROL, READIO and
WRITEIO are added to provide interface functions not available with OUTPUT
and ENTER. For IBASIC, WRITEIO can be used with:

» GPIB Interface (select code 7)

» IBASIC Interface (select code 8) (VXI instrument registers)
» RS-232/422 Serial Interfaces (select codes 9, 21-27)

» IBASIC Memory (select codes 9826, 9827)

7-26 IBASIC Command Reference

Using WRITEIO With GPIB Interface (Select Code 7)

To use WRITEIO with the GPIB interface (select code 7), the Agilent E1406 must
be set for System Controller mode. To use WRITEIO with the GPIB interface, use
apositive select code value to write a byte of datato aregister or use anegative
select code value to write aword of datato theregister. The WRITEIO registersfor
the GPIB interface follow.

WRITEIO Registers for the GPIB Interface

Register Title
0 Reset Interface*
3 Interrupt Enable
4 Rel ease Holdoff
17 MSB of Interrupt Mask
19 LSB of Interrupt Mask
23 Auxiliary Command Register
25 Address Register
27 Serial Poll Response
29 Parallel Poll Register
31 Data Out Register

* Equivalent to RESET 7

GPIB WRITEIO Register 3

Interrupt Enable

Bit7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
Enable Interrupt X X X X X X
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1

X = bits 6 through 0 not implemented on GPIB interface (interface select code 7).

IBASIC Command Reference 7-27

GPIB WRITEIO Register 4

Release Holdoff

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 X
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1
x = Writing anything to this register releases NDAC holdoff. If
non-zero, accept last secondary address as valid. If zero, do not
accept last secondary address(stay in LPAS or TPAS).
GPIB WRITEIO Register 17 MSB of Interrupt Mask
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Unused Unused Byte Ready for | End SPAS Remote/ My Address
Received | Next Byte | Detected Loca Change| Change
Vaue=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 Vaue=1
Setting a bit of this register enables an interrupt for the specified condition.
GPIB WRITEIO Register 19 LSB of Interrupt Mask
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Trigger HandshakeE| Unrecognized| Secondary Clear My Address SRQ IFC
Received rror Command Command While | Received | Received Received | Received
Group Addressed (MLA or MTA)
Vaue=128 | Vaue=64 | Value=32 Vaue=16 Value=8 Value=4 Vaue=2 | Value=1
Setting a bit of this register enables an interrupt for the specified condition.
GPIB WRITEIO Register 23 Auxiliary Command Register
Bit 7 Bit 6 Bit 5 Bit4 | Bit3 | Bit2 | Bitl | BitO
Set X X Auxiliary Command Function
Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.
Bits 6 and 5 are "don’t cares".
Bits 4 through 0 are Auxiliary-Command-Function-Select bits.
NOTE The commands shown in the following table can be sent to the interface by

sending the specified numeric values to GPIB WRITEIO Register 23.

7-28 IBASIC Command Reference

GPIB WRITEIO Register 23 - Auxiliary Commands

Decimal Vaue Auxiliary Command Description
0 Clear Chip Reset
128 Set Chip Reset
1 Release ACDS holdoff. If Address Pass Through isset, it indicates an invalid secondary
has been received.
129 Release ACDS holdoff. If Address Pass Through isset, it indicates a valid secondary
has been received.
2 Release RFD holdoff.
130 Same command as decimal 2 (above).
3 Clear holdoff on al data.
131 Set holdoff on all data
4 Clear holdoff on EOI only.
132 Set holdoff on EOI only.
5 Set New Byte Available (nba) false.
133 Same command as decimal 5 (above).
6 Pulse the Group Execute Trigger line, or clear the lineif it was set by decimal command
134.
134 Set Group Execute Trigger line.
7 Clear Return To Local (rtl).
135 Set Return To Local (must be cleared before the device is able to enter the Remote state).
Causes EOI to be sent with next data byte.
8 Same command as decimal 8 (above).
136 Clear Listener State (also cleared by decimal 138).
9 Set Listener State.
137 Clear Talker State (also cleared by decimal 137).
10 Set Talker State.
138 Go To Standby (gts; controller sets ATN false).
11 Same command as decimal 11 (above).
139 Take Control Asynchronously (tca; ATN true).
12 Same command as decimal 12 (above).
140 Take Control Synchronously (tcs; ATN true).
13 Same command as decimal 13 (above).
141 Does not apply to Agilent E1406.
14 Does not apply to Agilent E1406.
142 Clear the Interface Clear line (IFC).
15 Set Interface Clear (IFC maintained > 100 usec).
143 Clear the Remote Enable (REN) line
16 Set Remote Enable
144 Request control (after TCT is decoded, issue thisto wait for ATN to drop and receive
17 control).
Same command as decimal 17 (above).
145 Release control (issued after sending TCT to complete a Pass Control and set ATN false).
18 Same command as decimal 18 (above).
Enable all interrupts.
146 Disable dl interrupts.
19 Pass Through next Secondary Command.
147 Same command as decimal 20 (above).
20 Set Tl delay to 10 clock cycles (2 usat 5 MHZ).
148 Set Tl delay to 6 clock cycles (1.2 us a 5 MHz).
21 Clear Shadow Handshake.
149 Set Shadow Handshake.
22 Set RSV2.
150
152

IBASIC Command Reference 7-29

GPIB WRITEIO Register 25 Address Register

Bit 7 Bit6 Bit5 Bit4 | Bit3 | Bit2 | Bitl | Bit0
Enable Disable Disable Primary Address
Dual Listen Talker
Addressing
Vaue=128 | Vaue=64 | Vaue=32 | Vaue=16 ‘ Value=8 ‘ Value=4 ‘ Value=2 ‘ Value=1
Bit 7 set (1) enables the Dual-Primary-Addressing Mode.
Bit 6 set (1) invokes the Disable-Listen function.
Bit 5 set (1) invokes the Disable-Talker function.
Bits 4 through 0 set the device’s Primary Address (same address bit definitions as
READIO Register 5). Writing to this register also sets the Agilent E1406 non-volatile
mainframe address to the value of the Primary Address.
GPIB WRITEIO Register 27 Serial Poll Response Byte
Bit 7 Bit 6 Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO
Device- Request Device-Dependent Status
Dependent | Service
Status (RSVY)
Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Bits 7 and 5 through 0 specify the Device-Dependent Status.
Bit 6 sends an SRQ if set (1).
NOTE Given an unknown state of the Serial Poll Response Byte, it is necessary to write

the byte with Bit 6 set to zero followed by awrite of the byte with bit 6 set to the
desired final value. Thiswill ensurethat an SRQ will be generated if desired
(RSV1).

RSV 2 can be used to set the SRQ bit with a Seria Poll automatically clearing this
bit. When RSV1 isused, you must clear bit 6 with another WRITEIO command.

7-30 IBASIC Command Reference

GPIB WRITEIO Register 29 Parallel Poll Response

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DiO1
Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Vaue=4 | Value=2 | Value=1
A 1 sets the appropriate bit true during a Parallel Poll, while a 0 sets the
corresponding bit false. Initially, and when Parallel Poll is not configured, this register
must be set to all zeros.
GPIB WRITEIO Register 31 Data-Out Register
Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
EOI* DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 DiO1
Value=256 | Value=128 | Value=64 | Value=32 | Value=16 | Value=8 | Value=4 | Value=2 | Vaue=1

* = Setting this bit asserts EOI with the data byte specified in bits 0 through 7

Using WRITEIO With IBASIC Interface (Select Code 8)

To use WRITEIO to write to instruments viathe IBASIC interface (select code 8),
theformisWRITEIO 8, Ladd*256 + Reg#; Datum whereLadd isthe Logica
Address of the instrument to be written to, Reg# is the register number on the
instrument, and Datum is a16-bit INTEGER number.

Using WRITEIO With Serial Interfaces (Select Codes 9, 21-27)

Touse WRITEIO for aserid interface, the built-in RS-232 port must first be
assigned to IBASIC with DIAG:COMM:SER:OWNER IBASIC sent to the System
instrument or the Agilent E1324A plug-in module(s) must be assigned to IBASIC
by setting the LADD switch(es) to 241, 242, ..., 247.

Then, the first Agilent E1324A module (module #1) has LADD 241 and select code
21, the second module has LADD 242 and select code 22,..., and the seventh
module has LADD 247 and select code 27. Note that LADDs must be sequentia
and contiguous. For example, you cannot use LADD 242 without having LADD
241.

With READIO/WRITEIO, the program can send an RS-232C BREAK signa and
read the status of the interface. (This cannot be done with ENTER/OUTPUT.)
The WRITIO register map for the RS-232/422 serial interfacesfollows.

WRITEIO Register Map for RS-232/422 Serial Interfaces

Reg # Title Action
0 Interface Reset Clears transmit/receive buffers*
1 Write Data Write character to serial port without waiting
2 Send Break Send bresk to serial port

*

= Does not change port settings such as baud rate, etc.

IBASIC Command Reference 7-31

There are two stepsto write data to a serid interface using WRITEIO (and
READIO):

1. Use WRITEIO <sc>,1;Datato write data to the Write Data register
(WRITEIO register 1) for the code to be used.

2. Use READIO (<sc>,2) to read the results from READIO register 2 (Write
Data Status). If "0" isreturned, the writeto WRITEIO register 1 was
successful. If "1" isreturned, the write was not successful, and the process
must be repeated.

For example:

100 WRITEIO 21,1;Data_ser
Writes data to WRITEIO register 1 (Write Data register)
110 A =READIO (21,2)

Reads READIO register 2 (Write Data Status register). If the
write was successful, 0 isreturned. If unsuccessful, 1 is returned
and you should repeat the process.

Using WRITEIO With IBASIC Memory (Select Codes 9826, 9827)

To use WRITEIO with the IBASIC memory, use a positive select code value to
write abyte of datato amemory address or use anegative select code value to
write aword of datato a memory address. However, you cannot access memory
locations bel ow 1E00OH.

Using select code 9826 alows you to write directly into IBASIC memory
addresses. Using select code 9827 allows you to execute a machine-language JSR
("Jump to Subroutine™) instruction.

Using select code 9826 letsyou writedirectly into IBASIC memory addr esses.
For example:

WRITEIO 9826, Mem_address; Data_byte
Writes a byte of data to IBASIC memory

WRITEIO -9826, Mem_address; Data_word
Writes a word of data to IBASC memory

The second parameter in WRITEIO is the memory address of the byte or word to be
written and isinterpreted as adecimal address. For example, an address of 100 000
is10°. Thethird parameter is aso interpreted as a decima number.

CAUTION Writing into certain memory addresses may damage your computer’s
hardware. (See your computer manualsfor a description of the computer
architecture.). Toavoid this, only writeinto numericarray variableswith
WRITEIO. Agilent Technologies cannot be held liable for any damages
caused by improper use of thisfeature.

7-32 IBASIC Command Reference

Using select code 9827 lets you execute an M C 68000 machine-language JSR

(" Jump to Subroutine") instruction. One parameter can be specified in the
WRITEIO statement (DO_data in the example below), which will be written in the
processor’s DO register before the JSR instruction is executed and pushed onto the
A7 stack.

The following example program shows one way to place a machine-language
subroutinein an INTEGER array and then jumping to this subroutine.

10 DATA (INTEGER values of MC 68000 machine-language
20 DATA ingtructionsgo here.)

100 INTEGER Int_array (1:100)
110 READ Int_array(*), DO_data IRead instructions
|

115 ! and DO register data
120 Jsr_addr=READIO(9827,Int_array(1)) IGet JSR address

130 WRITEIO 9827, Jsr_addr;DO_data IPut data in DO, then do
140 PRINT "Returned from subroutine” JSR

For this program, IBASIC first keeps a copy of the MC 68000 processor registers
DO through D7 and AO through A6 on the stack. Then the value represented by the
expression DO_datais placed in the DO register and is pushed onto the stack, and a
machine-language JSR instruction is executed. The value of the expression
Jsr_addr isthe address of an INTEGER array that contains machine-language
instructions. Thevalue of Jsr_addr isforced to an even address beforethe JISR is
executed.

The last instruction in the subroutine should return control to IBASIC with an RTS
("Return from Subrouting") instruction. IBASIC will first restore the processor
registers and pop the data value (from the stack) to the state they were in before the
JSR was performed (by the WRITEIO statement).

Register A7 (the stack pointer) must have the same value at thefinal RTS asit had
when IBASIC executed the JSSR. The other processor register can be used freely in
the assembly routine. IBASIC then resumes program execution at the line following
the WRITEIO statement.

IBASIC Command Reference 7-33

7-34 IBASIC Command Reference

Chapter 8 Contents

Using This Chapter 8-1

SCPI Conformancelnformation 8-1

SCPI Command Overview 8-4

SCPl Command Format e e 8-4
SCPI Command TYPES . . . o v o v o e e e e e e 8-5
SCPl Command Parameters o 8-6
SCPl ResponseDataFormats o o o 8-7

DIAGnostic Subsystem Commands 8-8

PROGram Subsystem Commands 8-16
SYSTemSubsystemCommands 8-26

Chapter 8

SCPI Command Reference

Usin g This Ch apter This chapter describes the Standard Commands for Programmable Instruments
(SCPI) commands which apply to the IBASIC instrument in the Agilent E1406.
Chapter contents are:

» SCPI Conformance I nfor mation shows SCPlI commands implemented by
the IBASIC instrument.

e SCPI Command Overview summarizes SCPI command structure and
parameter types.

» SCPI Command Descriptions describes the SCPI commands which apply
to the IBASIC instrument. The SCPI commands must be sent to the IBASIC
instrument at secondary address 30. For example:

OUTPUT 80930;"DIAG:IBAS:DISP BUIL"
Command sent from IBASIC

OUTPUT 70930;"DIAG:IBAS:DISP BUIL"
Command sent from external controller

SCPI Conformance The following tables show the Standard Commands for Programmable I nstruments

Information Standard Version 1990.0 SCPI confirmed commands and commands that are not
part of the 1990.0 SCPI standard but are implemented by the IBASIC instrument.
Commands that are not part of the SCPI Standard Version 1990.0 definition are
indicated by a[Not SCPI] entry in the Notes column. The SCPI commands must
be sent to the IBASIC Instrument at address 80930. For example:

SCPI Command Reference 8-1

DIAGnostic Subsystem Commands for IBASIC

Keyword Parameter Form Notes
DIAGnostic
:COMM [Not SCPI]
:SER[N]
:STORe
:FILESystem <parameter>,<value>
:FILESystem? <parameter>
:IBASic
:BLOCKsize <bytes>
:BLOCKsize?
:DISPlay <parameter>
:DISPlay?
:STACKsize <bytes>
:STACKsize?
:SYNC
[:CLOCK]
[:CLOCK]?
PROGram Subsystem Commands for IBASIC
Keyword Parameter Form Notes
PROGram
:CATaog? [query only]
[:SELected]
:DEFine <program_code>
:DEFine?
:DELete <progname> [no query]
:EXECute <program_command> [no query]
:MALLocate <nbytes>|DEFault
:MALL ocate?
‘NAME <progname>
:NAME?
:NUMBer <varname> [,<nvalues>]
:NUMBer? <varname>
:STATe RUN|PAUSEe|STOP|CONTIinue
:STATe?
:STRing <varname> [,<svaues>]
:STRing? <varname>
‘WAIT
\WAIT?

8-2 SCPI Command Reference

SYSTem Subsystem Commands for IBASIC

Keyword Parameter Form Notes
SYSTem
:COMMunicate
:SERial[n]
:CONTrol [Not SCPI]
:DTR ON|OFF|STANdard|IBFull [Not SCPI]
:DTR? [Not SCPI]
‘RTS ON|OFF|STANdard|IBFull [Not SCPI]
‘RTS? [Not SCPI]
[:RECeive]
:BAUD <baud_rate>|MIN|MAX
:BAUD? [MINIMAX]
:BITS 7I8IMINIMAX
:BITS? [MINIMAX]
:PACE
[:PROTocol] XON|NONE [Not SCPI]
[:PROTocol]? [Not SCPI]
:THReshold [Not SCPI]
:STARt <characters>|[MIN|MAX [Not SCPI]
:STARt? [MINIMAX] [Not SCPI]
:STOP <characters>|[MIN|MAX [Not SCPI]
:STOP? [MINIMAX] [Not SCPI]
:PARity
:CHECk 1|0|ON|OFF
:CHECK?
[:TYPE] EVEN|ODD|ZERO|ONE|NONE
[:TYPE]?
:SBITs 1]2[MIN[MAX
:SBITS? [MINIMAX]
:TRANsmit
:AUTO 1|0|ON|OFF
:AUTO?
:PACE
[:PROTocol] XON|NONE [Not SCPI]
[:PROTocol 7| [Not SCPI]
:ERRor?

SCPI Command Reference 8-3

SCPI Command
Overview

SCPI Command Format

This section summarizes SCPI command format and structure. See the Beginner’s
Guideto SCPI (available from your Agilent Technologies Sales and Support
Office) for a complete description of SCPI command formats and structure.

As defined in the Standard Commands for Programmabl e Instruments Manual,
Standard Commands for Programmable Instruments (SCPI) commands are
organized into a hierarchial command structure and are grouped into subsystem
command groups.

The subsystem command structure generally consists of atop-level (root)
command and one or more lower -level commands. Each command consists of a
keyword and (possibly) one or more parameter s. Commands can be abbreviated
or can beimplied. Implied commands appear in square brackets ([]), but the
brackets are not sent with the command.

A colon (:) always separates a command from the next-level command. Unless
specified, acommand aways has aquery version which is the command followed
by a question mark (?). Lower-level commands may or may not have parameters.
Parameters (when specified) can berequired or optional. Optional parameters are
enclosed in square brackets ([]), but the brackets are not sent with the command.

For example, in the following command table, PROGram isthe keyword for the
PROGram subsystem command group and is the root command, :CATalog?isa
first-level (required) command, [:SELected] isafirst-level implied command,
:DEFine is asecond-level command, and :DEFine?isthe query version of
:DEFine.

Typical PROGram Subsystem Commands

Keyword Par ameter
PROGram
:CATdog?
[:SELected]
:DEFine <program_code>
:DEFine?

8-4 SCPI Command Reference

The parameter for :DEFineis <program _code>. Since the parameter is not
enclosed in square brackets ([]), it isarequired parameter. Y ou can use colonsto
form commands using keywords from different levels. Two examplesare:
PROGram:CATaog? and PROGram:SEL ected:DEFine <program_code>.

SCPI Command Types

Required
Commands

Abbreviated Commands

Implied Commands

Query Commands

Variable Command Syntax

SCPI commands can be required, abbreviated, or implied and usualy havea
query form. In addition, some commands have what appearsto be avariable
syntax.

Commands in the syntax tables which are not enclosed in square brackets ([]) are
required commands and must be sent in the form shown. (See Abbreviated
Commands which follows.)

The command syntax shows most commands as a mixture of upper- and lower-case
letters. The upper-case letters indicate the short form of the command and must be
used. The lower-case letters are optional and can be used asdesired in the
command. You can useall upper-case, al lower-case, or amixture of |etters.

For example, if the command syntax shows DEFine, then DEF or DEFINE is
acceptable. Other forms of DEFine, such as DEFIN or DE will generate an error.
Since upper-case and lower-case letters can be used, DeFiNe, def, define, etc. are
also acceptable.

Implied commands appear in square brackets ([]) in the command syntax. (Note
that the brackets are not part of the command and are not sent to an instrument.)
When you send alower-level command without sending the preceding implied
command, the instrument responds asif the implied command had been sent.

For example, since[:SELected] is an implied command for the PROGram
subsystem, PROGram: SEL ected: DEFine <program_code> and PROGram:DEFine
<program_code> are equivalent.

Unless noted, al SCPI commands have aquery version formed by adding a
guestion mark (?) to the command. For example, PROG:DEF? is the query version
of the PROG:DEF command. In this manual, commands which do not have a
guery version are indicated by [no query] in the subsystem command table.
Commands which are query ONLY are indicated by a[query only] entry in the table.

A few commands use what appearsto be a variable syntax. For example, in
SYST:COMM:SER[n], the"n" isreplaced by a number from O through 7. Inthis
case, no space is left between the command and the number since the number is
NOT aparameter, but is part of the command syntax. Since [n] isoptional, if no
valueisentered for "'n", adefault valueisused.

SCPI Command Reference 8-5

SCPI Command

Some SCPI commands have parameters which can be required or optional. Inthis

Parameters manual, <> denotesarequired parameter and [] denotes an optional parameter.
The<>and[] notations are not part of the parameter and are not sent with the
command.

If you do not specify avalue for an optional parameter, the instrument chooses a
default value. For example, consider the command
SYST:COMM:SER1:CONT:BAUD?[MIN|MAX]. Thecommand sent without a
parameter returns the current baud rate.
The command sent with the MIN parameter returns the minimum baud rate
available, while the command sent with the MAX parameter returns the maximum
baud rate available. The following table summarizes SCPI command parameter
types.
SCPI Parameter Types
Parameter
Type Description Examples
Numeric Decimal representation of numbers including 100, 100., -1.23,
optional signs, decimal points and scientific 4.56e<space>3
notation.
Extended | Sameas Numeric plusMAX, MIN, and 100, 100., -1.23,
Numeric DEFault parameter values. MAX, MIN, DEF Discrete
Boolean Represents asingle binary condition that is ON Boolean TRUE
either TRUE or FALSE. Oneof four possible | OFF Boolean FALSE
values: ON|OFF|1/0.
String Contains virtualy any set of ASCII characters. | ‘thisisastring’
Must begin with asingle or double quote and "thisis aso astring"
end with the same character (adelimiter). 'single quote inside brackets [’
Indefinite | Typically used to transfer large quantities of OUTPUT @Box;"#0ABC",END
Length related data. Genera formis sends ABC as indefinite length block
Block #0,<data_bytes><new line><"END>. parameter.
Definite General form is #<num_digits><num_bytes> OUTPUT @Box;"#13ABC" sends
Length <data bytes> where <num_digits> specifies ABC asdefinite length block
Block how many digits are in <num_bytes> and parameter, where 1 = one digit
<num_bytes> specified the number of data follows and 3 = 3 bytesin the digit.
bytesin <data_bytes>.
Non- Specify settingsin hexadecimal, octal, or binary | #b0101 = binary for decima 5
decima formats. #Q71 = octal for decimal 57
Numeric #hFA = hexadecimal for decima 250

8-6 SCPI Command Reference

SCPI Response Data SCPI command response data is data returned from an instrument to the IBASIC

Formats computer or to an external computer. Thefollowing table summarizes response
dataformats.
Response Data Types
Response
Data Type| Description Examples
Resl Decimal numbersin fixed decimal notation or 1.23E+0, 1.23, -100.0
in scientific notation.
Integer Decimal representations of integer values 0, +100, -100
including optional signs.
Discrete Returns short form of specific set of values. INT, EXT, POS, NEG
String Similar to string parameters, except use only "This1Svalid"
double quotes as delimiters. "SOISTHIS"™ ™
"l said, ""Hello!"""
Definite General form is #<num_digits><num_bytes> #16SAMPLE 6 bytes of data
Length <data_bytes>, where <num_digits> specifies #2111.1,2.2,3.3 11 bytes of data
number of digitsin <num_bytes> and #19772+++!11 9 bytes of data
<num_bytes> specifies how many bytes of data
follow in <data_bytes>.
Indefinite | Genera formis #0this is asample block
Length #0<data_bytes><new_line><"END>. #0111111110000000011111111
Hexa Format values as base 16 numbers. H and A-F | #HOFOF, #H1A1A, #H2B2B Octa
decima are alway's upper-case.
Binary Format values as base 2 numbers. B is always #B00001111, #B0O0000000
upper-case.

SCPI Command Reference 8-7

:COMMunicate

DIAGnostic For IBASIC, the DIAGnostic subsystem can be used to adjust the Agilent E1406
Sub system file system, set memory sizes, and adjust the IBASIC operating system clock time.
The DIAGnostic subsystem commands table for the IBASIC instrument follows.
Commands >
DIAGnostic Subsystem Commands for IBASIC
Keyword Par ameter Form Description
DIAGnostic
:COMM
:SER[N]
:STORe Sets current RS-232 parameters as power-on defaults
:FILESystem <parameter>,<vaue> Allows adjustment of IBASIC file system
:FILESystem? <parameter> Query IBASIC file system parameters
:IBASic
:BLOCKsize <bytes> Sets memory size IBASIC requests from operating system
:BLOCKsize? Query memory size - return is number of bytes
:DISPlay <parameter> Use to connect IBASIC to display at power-on
:DISPlay? Query current DISPlay parameter specified
:STACKsize <bytes> Sets run-time stack size for IBASIC at power-on
:STACKsize? Query stack size parameter
SYNC
[:CLOCK] Set IBASIC clock to within one second of real-time clock
[:CLOCK]? Query time difference between IBASIC and real-time clock

:COMMunicate DIAGnostic:COM Municate: SERial[n]: STORe stores the serial communications
:SERial[n]:STORe parameters (such as BAUD, BITS, PARIty, etc.) into non-volatile storage for the
serid interface specified by [n] in SERial[n].

Comments .

Example Store

8-8 SCPI Command Reference

Until DIAG:COMM:SER[n]:STORe is executed, communication parameter
values are stored in volatile memory, and a power failure will cause the
settings to be lost.

DIAG:COMM:SER(1-7):STOR causes an Agilent E1324A to storeits
settingsin an on-board EEROM. Since this EEROM write cycle takes
nearly one second to complete, wait for this operation to complete before
attempting to use that serial interface.

The Agilent E1324A’s EEROM used to storeits serial communication
settings has afinite lifetime of approximately ten thousand write cycles.
Even if your application program sent the STORe command once every day,
the lifetime of the EEROM would till be over 27 years. However, do not
use the STORe command to an Agilent E1324A more often than necessary.

Related Commands: all SYST:COMM:SER[n]:... commands

Settingsfor Agilent E1324A Module #3.

DIAG:COMM:SER3:STOR

Sores current settings for RS-232 parametersin Agilent E1324A
modul e #3 EEROM

:FILESystem

:FILESystem DIAGnostic:FILESystem <parameter>, <value> alows the user to adjust the
IBASIC file system by modifying parameters stored in nonvolatile RAM.
Modifying these parameters allows the user to trade memory use for performance.
Parameters The following table defines the DIAGnostic:FILESystem parameters and values

which can be set and shows the range of value and the default value. Unless
indicated, all values are 16-bit unsigned quantities.

Para-
meter Parameter Description Range of value | Defaultvalue
1 USER_START: Memory address of the start of a user-defined 24 hits 0
RAM disk that will become memory volume ":,0,16" after it is
initialized. Zero means user RAM disk not present.
2 USER_END: Memory address one byte past the end of a 24 bits 0
user-defined RAM disk. Thisvalue must be greater than
USER_START vaue.
3 FILE_BUFFER: Onefor each file which can be opened. 512 - 65535 2048
4 COPY_BUFFER: Used to copy files and during media 1024 - 65535 32768
initialization. One/each task using file system.
5 SECTOR_BUFFER: Used by low-level disk read/write routines 512 - 65535 1024
for partial sector reads and writes.
6 FAT_BUFFER: Used for DOS disks to keep track of thefile 512 - 65535 4608
allocation table. One for each disk unit that can be on-line at atime.
7 TRANS_METHODS: Reserved - DO NOT CHANGE! 4-32 5
8 FILE_SYSTEMS: Reserved - DO NOT CHANGE! 3-32 4
9 MAX_UNITS: Maximum number of disksthat can be on-line. 3-32 10
Any IBASIC command that causes areferenceto the disk (MSl,
CAT, ASSIGN, etc.) putsthe disk on-lineif the disk exists.
10 INITIAL_UNITS: Memory is reserved for this many disks at 0- MAX_UNITS 3
power-on. If more disks are required (up to MAX_UNITS),
memory is alocated when disks needed.
11 MAX_FILES: Maximum number of filesthat can be open at once 6 - 256 30
for the entirefile system.
12 INITIAL_FILES: At power-on, memory isreserved for the 0- MAX_FILES 10
number of files specified.
13 DISK_WAIT: Number of seconds Agilent E1406 will wait for a 0- 65535 60
disk to power up while searching for the AUTOST program. If a
disk is not readabl e after thistime, AUTOST is not performed.
14 AUTOSTART: If zero,IBASIC will not AUTOST, thus avoiding 0 or any non- 1
the DISK_WAIT at power-on. If non-zero, IBASIC searches zero number
available disks for an AUTOST program (see parameters 15-26).
15* DISK1 TYPE: N/A 1
16* DISK1_SC: Select Code (and Primary Addr if type = 1) N/A 700
17+ DISK1_UNIT: Mass Storage Unit Number of disk N/A 1
18* DISK1_VOL: Mass Storage Volume Number of disk N/A 0
19* DISK2_TYPE: N/A 3

SCPI Command Reference 8-9

:FILESystem

Para-
meter Parameter Description Range of value | Defaultvalue
20* DISK?2_SC: Select Code (and Primary Addr if type = 1) N/A 0
21* DISK2_UNIT: Mass Storage Unit Number of disk N/A 1
22* DISK2_VOL: Mass Storage Volume Number of disk N/A 0
23* DISK3 _TYPE: N/A 1
24* DISK3_SC: Select Code (and Primary Addr if type = 1) N/A 700
25*¢ DISK3_UNIT: Mass Storage Unit Number of disk N/A 0
26* DISK3 VOL: Mass Storage Volume Number of disk N/A 0
27%* TMARRAY_START: Address of the beginning of the transfer 0-3
method array (query only). Thisisthe address of thefirst element
of an array of four 32-bit pointers to transfer method functions for
disks (the functions that know how to physicaly read and writeto
the disk).
28*** FSARRAY_START: The address of the beginning of an array of 0-n

(FILESY STEM) 32-hit pointersto structures describing the disk
types (LIF or DOS) the file system can recognize.

1000 RAMVOLO_START (Query only): The starting memory address
of "MEMORY,,0,,0". If thisRAMVOL has not been defined, O is
returned.

1001 RAMVOL1 START (Query only): The starting memory address
of "MEMORY,,0,,1". If thisRAMVOL has not been defined or it
is non-volatile, O isreturned.

1002- RAMVOL2_START - RAMVOL15 START (Query only): The
1015 starting memory address of any of the nonvolatile RAM volumes 2
through 15. If the RAMVOL has not been defined, O is returned.
1016 RAMVOL16_START (Query only): The starting memory address
of "MEMORY,,0,,16". If thisRAMVOL has not been defined, 0

is returned.
* = See Default Search Order for AUTOST in Comments
** = See Transfer Method Array in Comments
*** = See File Type Structures in Comments
Comments » Default Search Order for AUTOST. Parameters 15 - 26 of the

DIAG:FILESystem command determine which disks the Agilent E1406 will
search for the AUTOST program. Three disks will be searched. The default
search order follows (the Volume # must be O for RAM volumes and 3.5

inch disks).
DISK 1 = 3.5 inch disk -",700,1"
DISK 2 = Nonvolatile RAM Disk - ":0,1"
DISK 3 = Hard Disk Drive - ":,700,0"

Parameters 15-18 describe the first disk searched. Parameters 19-22
describe the second disk searched. Parameters 23-26 describe the third disk
searched.

8-10 SCPI Command Reference

:FILESystem

» Disk Types1and 3 Recognized. The Agilent E1406 recognizes only disk
type 1 (GPIB SS80) and disk type 3 (MEMORY). Thus, the Default value
column for DISKn_TY PE (parameters 15, 19, and 23) must be 1 or 3.

» Disk Wait. Even when autostarting from a RAM volume, IBASIC will wait
for the floppy disk to power up to check for the "AUTOST" program on the
floppy. Thewait timeis set by parameter 13. If the floppy isrecognized
before this time has elapsed, and thereisno "AUTOST" program on the
floppy, IBASIC will boot on the RAM volume.

» Hard Disk Settings. The hard disk must be set to address O for the default
search to work. If you set your disk to adifferent address, modify the
DISKn_SC (parameters 16, 20, or 24) to the new address. For example, if
you set the hard disk to address 2, set DISK3_SC (parameter 24) to 702.

* Transfer Method Array. TMARRAY_START (parameter 27) definesthe
address of thefirst element of an array of four 32-bit pointersto transfer
method functionsfor disks. The element numbers are:

Element # Transfer Method
0 NULLDEV (returns ERRS - don't replace thisl)
1 EXTERNAL (returns ss80tm)
2 INTERNAL (returns uninittm - can be redefined)
3 MEMORY (returns ramtm)

» FileTypeStructures. FSARRAY_START (parameter 28) defines the
address of the beginning of an array of (FILESY STEMYS) 32-hit pointersto
structures describing the disk types (LIF or DOS) that the file system can
recognize. The array is searched from high element to low element
whenever adisk isfirst checked to seeif the disk contains a recognized file
system. If the disk isrecognized, the search ends. The eement numbers are:

Element # File System Type
0 Unrecognized (do not replace this!)
1 LIF
2 DOS
n (NULL) - marks the end of the list

Related Commands; None

Example Disable AUTOSTART Search

DIAG:FILES 14,0

Since <value> is 0, the Agilent E1406 will not attempt to find an
AUTOST program and the DISK_WAIT (parameter 13) wait time
will not occur at power-on.

SCPI Command Reference 8-11

:FILESystem?

:FILESystem?

Comments

Example

!IBASic:BLOCKsize

Parameters

Comments

Example

:IBASic
:BLOCKsize?

Example

DIAGnhostic: FILESystem? returns the current value for the
DIAGnostic:FILESystem parameter specified.

» Related Commands: DIAG:FILESystem

Read AUTOSTART Parameter Value

DIAG:FILES? 14

Returns 1 if AUTOSTART (parameter 14) is enabled or returns 0
if AUTOSTART isdisabled.

DIAGnhostic:IBASc:BL OCK size <bytes> sets the size of memory that IBASIC
requests from the operating system whenever more memory isrequired for program
storage.

Name Description Range Default

bytes Sets size of memory 1024 - 65536 bytes 8192 bytes

IBASIC will request.

» Setting BLOCK size. The bytes parameter can be set at any time, but
changes take effect only with the next system reset or power-on. Setting
bytes = 0 causes the operating system to use the default setting (8192 bytes).

 Related Commands: DIAG:IBAS.STAC

Set IBASIC Memory Block Size

DIAG:IBAS:BLOCK 16384

After systemreset or after cycling power, sets 16384 bytes asthe
size of the memory block IBAS C will request if more memory is
required for program storage.

DIAGnostic:|BASic:BL OCK size? returns the current value for the
DIAGnostic:IBASic:BLOCK size bytes parameter.

Read IBASIC Memory Block Size

DIAG:IBAS:BLOCK?

Returns the size of memory of the memory block IBASC will ask
for after a systemreset or power is cycled.

8-12 SCPI Command Reference

:IBASic:DISPlay

!IBASic:DISPlay DIAGnostic:IBASic:DISPlay <parameter> allows the built-in RS-232 port or
Agilent E1324A plug-in module RS-232 ports to be automatically connected to
IBASIC at power-on.

Parameters Name Description Range
NONE IBASIC not connected to any display N/A
BUILtin IBASIC is connected to built-in RS-232 port N/A
if portistype A (see Comments)

number IBASIC is connected to Agilent E1324A 1-7

RS-232 port if port existsand istype A (see

Comments). number = 1 connects Agilent

E1324A #1 port, etc.

Comments e Serial PortsMust be Assigned to User Interface. For the
DIAG:IBASIc:DISPlay command to work, the RS-232 port(s) must be
assigned to the User Interface (port type A) with DIAG:COMM:SER:OWN
SYST. The Agilent E1324A serial ports are assigned to the User Interface
by setting the LADD switchesto 1, 2,...,7.

» Related Commands: DIAG:FILESystem

Example IBASIC Set on Built-in RS-232 I nterface

DIAG:IBAS:DISP BUIL

When command is executed and power is cycled, the terminal
connected to the buiult-in RS-232 interface shows IBASC_240:

!IBASic:DISPlay? DIAGnostic:IBASic:DISPlay? returns the current val ue for the
DIAGnostic:IBASic:DISPlay parameter specified.

Example Read DIAG:IBAS:DISP Parameter Value

DIAG:IBAS:DISP BUIL

Connects built-in RS-232 port to IBASIC computer after power is
cycled.

DIAG:IBAS:DISP?

Returns "BUIL" since the built-in RS-232 port is connected to
IBASIC.

SCPI Command Reference 8-13

!IBASic:STACKsize

IBASic:STACKSsize

Parameters

Comments

Example

JIBASic:
STACKsize?

Comments

Example

DIAGnhostic:IBASic: STACK size <bytes> sets the run-time stack size allocated to
IBASIC at power-on. The IBASIC stack is used for arrays and variables which are
not in COM memory and for temporary storage when an IBASIC program is run.
DIAG:IBAS:STACK aso setstheinitial valuereturned by the
PROGram:MAL L ocate ? command after a power-on cycle.

Name Description Range Default
bytes Sets run-time stack sizefor 3072 bytes- 32768 bytes
IBASIC at power-on. available memory

» Setting STACksize. The bytes parameter can be set a any time, but the
change takes effect only with the next system reset or power-on. Setting
bytes = 0 causes the operating system to use the default setting (32768 bytes).

» Correctionsfor Memory Overflow Error. If ERROR 2 - Memory
Overflow occurs when the RUN command isissued for an IBASIC program,
the stack sizeistoo small. To correct this, you can use the
DIAG:IBAS:STACK command to increase stack size, cycle power, and retry
the program.

» Corrections Using COM Blocks. You can also define large arrays in the
program in a COM block. Since COM memory is not taken from the stack
requirements for the program, you may be able to run the program without
cycling power.

* Related Commands:DIAG:IBAS.BLOC, PROG:MALL

Set IBASIC Stack Size

DIAG:IBAS:STACK 16384

After systemreset or cycling power, sets 16384 bytes as the size
of the run-time stack for IBAS C (the default value for the
PROG:MALL command).

DIAGnostic:|BASic: STACK size? returns the current value for the
DIAGnostic:IBASic:STACKSsize bytes parameter.

Related Commands. DIAG:IBAS.STACK

Read IBASIC Run-Time Stack Size

DIAG:IBAS:STACK?
Returnsthe size of the run-time stack for IBAS C.

8-14 SCPI Command Reference

IBASic:SYNC

Parameters

Comments

Example

JIBASic:SYNC?

Comments

Example

:!IBASIic:SYNC

DIAGnhostic:IBASIc:SYNC[:CLOCK] resetsthe IBASIC operating system clock
to within one second of the real-time clock.

None

Setting Operating System Clock. All IBASIC times are derived from the
operating system clock. The operating system clock is set to the real-time
clock at system reset, at power-on, or when the real-time clock is set with
SYST:TIME.

Operating System Clock Errors. The operating system clock may lose
time during certain operations when interrupts are turned off for more than
10 msec. The DIAG:IBASIc:SYNC[:CLOCK] allows you to set the
operating system clock to within one second of the battery-backed rea -time
clock.

Operating System Clock ErrorsEffect on TIMEDATE. Sinceall IBASIC
times are derived from the operating system clock, errorsin this clock will
affect the TIMEDATE reported by IBASIC and the time/date stamp on files
in thefile system.

Related Commands: SYST:TIME, SYST:TIMEDATE

Set IBASIC Clock

DIAG:IBAS:SYNC

Sets the operating system clock time to within one second of the
real-time clock time.

DIAGnhostic:IBASic: SYNC[:CL OCKk]? returns the number of seconds difference
between the time on the real-time clock and the time on the operating system clock
to within one second. Theresult is accurate if the two clocks are within 12 hours of
each other.

One Second Resolution Between Clocks. The resolution between the
real-timeand IBASIC operating system clocksis one second. Therefore, a
returned value of O or -1 indicates the two clocks are synchronized.

Clock TimeRelationship. If thereturned value is negative, the IBASIC
operating clock is behind the real-time clock. If thereturned valueis
positive, the IBASIC operating clock is ahead of the real-time clock.

Related Commands: DIAG:IBAS:SYNC[:CLOCK]

Read Clock Time Differences

DIAG:IBAS:SYNC?

Returns the time difference (in seconds) between the real-time
and oper ating system clock times

SCPI Command Reference 8-15

:CATalog?

PROGram The PROGram subsystem provides the means to generate and control an IBASIC
Sub system program which isresident in the Agilent E1406. Using the PROGram subsystem,
Commands you can list programs, create, download, and upload programs; execute downloaded
programs; and set or query the state of programs. The PROGram subsystem
commands table for IBASIC follows.
PROGram Subsystem Commands for the IBASIC Instrument
Keyword Parameter Form Description
PROGram
:CATaog? ListsIBASIC program name, if any
[:SEL ected]

:DEFine <program_code> Use to download IBASIC program

:DEFine? Use to upload IBASIC program

:DELete <progname> Delete IBASIC program from Agilent E1406

:EXECute <program_command> Execute IBASIC command specified

:MALLocate <nbytes>|DEFault Reserves memory for IBASIC arrays/variables

:MALLocate? Query memory space allocated for IBASIC

:NAME <progname> Assign a name to a downloaded IBASIC program

:NAME? Query name of downloaded IBASIC program

:NUMBer <varname> [,<nvalues>] Assign values to numeric program variables

:NUMBer? <varname> Query value of numeric program variables

:STATe RUN|PAUSE|STOP|CONTInue Set state of downloaded IBASIC program

:STATE? Query downloaded IBASIC program state

:STRing <varname> [,<svaues>] Set contents of string variables

:STRing? <varname> Query contents of string variables

‘WAIT Wait to execute next command

‘WAIT? WAIT query

:CATalog? PROGram:CATalog? liststhe IBASIC program name. If an IBASIC program name

exists, the program nameisreturned. If no name is assigned to the program, PROG
isreturned. If an IBASIC program is not downloaded, the null string (") is
returned.

» Can Define Only One IBASIC Program. Only one IBASIC program can

» *RST Condition: A reset entered viathe interface setsthe IBASIC program
to the STOPped state and changes the IBASIC program name to PROG. A
reset generated by IBASIC acts the same except it will not cause the IBASIC
program to go to the STOPped state.

Comments
be defined at atime.
* Related Commands. PROG:CAT
Example Query IBASIC Program

PROG:CAT?

Returns program name or returns PROG if name not assigned.
Returns"" (null string) if no IBASIC program is downloaded.

8-16 SCPI Command Reference

:DEFine

:DEFine PROGram:DEFine <program code> is used to create and download programs to
the Agilent E1406.

Comments .

Downloading IBASIC Programs. Only one IBASIC program can be
downloaded at atime. To download anew IBASIC program, you must first
delete (with PROG:DEL) an existing IBASIC program. Attempting to
download a new program without first deleting the existing program results
inan "lllegal Program Name" error.

Using other PROG commands. Y ou must define a program before you can
use PROG:EXECute or PROG:MALLocate. If necessary you can define a
dummy program with the following line of code from an external computer:

OUTPUT 70939;"PROG:DEF #0" END

Rules for Downloading Programs. Downloaded programs must use
definite or indefinite length block parameters containing lines of program
code (SCPI parameter types are defined on page 8-6). Each line must be
separated by <CR> or <CR> <LF>. Any line with a syntax error isturned
into acomment and a " Program Syntax" error is generated.

Downloaded Programs Exceeding M emory. When the size of a program
to be downl oaded exceeds memory available in the Agilent E1406, program
lines are saved up to the point of memory overflow. When memory
overflow occurs, a"Program Syntax” error is generated.

Uploading IBASIC Programs. IBASIC programs are uploaded (using
PROG:DEF?) as definite length block response data. For an IBASIC
program to be uploaded, the program must bein the PAUSed or STOPped
dtate. If aprogramisin the RUN state, a"Program Currently Running” error
isgenerated.

Related Commands. PROG:DEL

*RST Condition: A reset entered viathe interface setsthe IBASIC program
to the STOPped state and changes the IBASIC program name to PROG. A
reset generated by IBASIC acts the same except it will not cause the IBASIC
program to go to the STOPped state.

Example Download IBASIC Program From External Computer

OUTPUT 70930;"*RST;*CLS;PROG:DEL:ALL"

Clearsall status registers, and deletes IBASC programiif it
exists.

OUTPUT 70930;"PROG:DEF #0"
Downl oads program using indefinite length block parameters.
OUTPUT 70930;" 10 DIM C$[80]"

Typical line for downloaded programusing IBAS C and SCPI
commands.

OUTPUT 70930;" 40 END" END

Last line of downloaded program - must include the END
Statement

SCPI Command Reference 8-17

DEFine?

DEFine?

Comments

Example

:DELete

Comments

Example

:EXECute

Parameters

Comments

PROGram:DEFine? uploads an IBASIC program from the Agilent E1406 into
an GPIB compuiter.

Related Commands. PROG:DEF

Upload IBASIC Program to External Computer

OUTPUT 70930;"PROG:DEF?"

Uploads program using definite length block response data.
ENTER statement

See Chapter 6 - Talk/Listen Mode Operation for an example

PROGram:DEL ete deletes adownloaded IBASIC program from IBASIC
memory in the Agilent E1406.

Cannot Delete RUNning Programs. If an IBASIC program is in the RUN
state when PROGram:DELete:ALL is executed, a"Program Currently
Running" error is generated and the program is NOT del eted.

This does not delete the selected program name, if one has been assigned
using the PROG:NAME command. If you query for the program name using
PROG:NAME?you will get the previously selected name, even though the
program is no longer in memory.

Related Commands. PROG:STAT

Delete IBASIC Program

PROG:DEL
Deletes IBAS C programif the programis not in the RUN state.

PROGram:EXECute <'program_command’> executes the IBASIC command
specified.

Parameter Name Type Range of Values Default

Program_command string Supported IBASIC Commands None

8-18 SCPI Command Reference

Cannot Execute RUNning Programs. If an IBASIC program isin the RUN
state when PROGram:EXECute is attempted, a "Program Currently
Running" error is generated and the command is NOT executed.

An IBASIC program must already have been defined. If not, attempting
to use PROG:EXEC will generate an "lllegal Program Name" error.

[llegal Commands. If the string data representing an IBASIC command is
not legal, a"Program Syntax Error" is generated.

Related Commands. PROG:STAT

*RST Condition: None

Example

:MALLocate

Parameters

Comments

Example

:MALLocate?

Comments

Example

:NAME

Comments

:MALLocate
Execute IBASIC Command
PROG:EXEC 'BEEP’ Causes audible BEEP

PROGram:MALL ocate <nbytes>|DEFault reserves memory space for IBASIC
arrays and variables and subprogram stack plus the temporary storage required
needed by a RUNning IBASIC program. Common variables are all ocated from
System memory on demand.

Parameter Name Type Range of Values Default

nbytes numeric 880 - avail able memory 32768

» Using DEFault Setting. When the nbytes parameter is specified, nbytes
bytes of memory space are allocated for the IBASIC program arrays and
variables and temporary storage required by the RUNning program. When
DEFault isused, IBASIC calculates the amount of memory space required.

* AnIBASIC program must already have been defined. If not, attempting
to use PROG:MALL will generate an "lllegal Program Name" error.

 Related Commands:. DIAG:IBAS.STACK

Allocating IBASIC Memory Space

PROG:MALL 50000

Allocates 50000 bytes of memory space for arrays and variables
and subprogram stack for temporary storage needed by a
RUNnNing IBAS C program.

PROGram:MALL ocate? returns the number of bytes allocated in IBASIC
memory for IBASIC arrays and variables and subprogram stack.

 Related Commands. PROG:MALL

Return IBASIC Memory Allocated

PROG:MALL?

Returns number of bytesreserved in IBASC memory for IBASIC
arrays and variables.

PROGram:NAME <progname> selects a named program for use with future
PROG commands. Since only a single program can be downloaded at any onetime
with IBASIC, you will not need this command.

* Name Not Related to File Name. The IBASIC program name has NO
relationship to any file name from which the program may have been loaded.

* Related Commands. PROG:NAME?

» *RST Condition: A reset entered viathe GPIB interface sets the IBASIC
program to the STOPped state and changes the IBASIC program name to

SCPI Command Reference 8-19

‘:NAME?

8-20

Example

:NAME?

Comments

Example

‘NUMBer

Parameters

Comments

Example

PROG. A reset generated by IBASIC acts the same except it will not cause
the IBASIC program to go to the STOPped state.

Name IBASIC Program

PROG:NAME Volts
Sdlects program name Volts for future PROG commands.

PROGram:NAME? returns the selected program name (if any). Returns "PROG"
if no program name has been selected. Returns a null string (") if no programis
downloaded.

Related Commands. PROG:NAME

Return Program Name

PROG:NAME?

Returns program name (if any). Returns PROG if no program
nameisassigned. Returns"" if no programis downlocaded.

PROGram:NUM Ber <varname>, <nvalues> sets the valug(s) of numeric
program variables or arraysin an IBASIC program.

Parameter Name Type Range of Values Default
varname string Any ASCII characters None
nvalues numeric None

* IBASIC Program Must First Exist. If an IBASIC program is not defined
(as set with PROG:DEF), attempting to use PROG:NUMB generates an
"lllegal Program Name" error.

» Using <varname>. The variable specified in <varname> must be an
existing variable in the IBASIC program or a"lllegal Variable Name" error
will be generated. <varname> can be either character data or string data.

» <varname> Over 12 Characters. If the variable nameislonger than 12
characters, adeimiter (') isrequired.

» Using <nvalues>. <n values> isalist of comma-separated numeric values
used to set <varname>. If <varname> cannot hold all the specified
<nvalues>, a"Parameter Not Allowed" error is generated.

 Related Commands; PROG:NUMB?

 *RST Condition: None.

Assign Valuesto Variables

PROG:NUMB B,10
Assign a value of 10 to variable B
PROG:NUMB ’'number_devices’,1

Assign value of 1 to variable number_devices. Delimiter required
sincevariable name is longer than 12 characters.

SCPI Command Reference

:NUMBer?

Comments

Example

:STATe

Parameters

Comments

Example

:NUMBer?

PROGram:NUM Ber ? <varname> queries the value(s) of the specified numeric
variablein the IBASIC program. Variable contents arereturned asa

comma-separated list.
Related Commands. PROG:NUMB

Return Value of Variable
PROG:NUMB B,10

Assign a value of 10 to variable B.

PROG:NUMB? B
Returns a value of 10.

PROGram:STATe <dstate>setsthe state of an IBASIC program.

Parameter Name Type

Range of Values

Default

State discrete

RUN | PAUSe | STOP|

CONTinue

None

» IBASIC Program States. The following table shows the effect of setting
the STATeto the desired state from each of the possible current states. In
some cases, a" Settings Conflict” error is generated.

State Requested | Current State
RUN PAUSe STOP
RUN Error (-221) RUN RUN
CONTinue Error (-221) RUN Error (-221)
PAUSe PAUSe PAUSe STOP
STOP STOP STOP STOP

* Related Commands: None

» *RST Condition: A reset entered viathe interface sets the IBASIC program
to the STOPped state and changes the IBASIC program name to PROG. A
reset generated by IBASIC acts the same except it will not cause the IBASIC

program to go to the STOPped state.

Set IBASIC Program to RUN State

PROG:STAT:PAUS
Pauses IBAS C Program
PROG:STAT:CONT

SetsIBASIC Programto RUN state.

SCPI Command Reference 8-21

:STATe?

:STATe?
Comments

Example

:STRing

Parameters

Comments

Example

:STRing?

Comments

Example

PROGram:STATe? queries the current state of the IBASIC program.
Related Commands: PROG:STAT

Return State of IBASIC Program

PROG:STAT:PAUS
Pauses IBASI C Program.
PROG:STAT?
Returns PAUSe as |BAS C program state.

PROGram:STRing <varname>, <svalues> sets the contents of string program
variables and arraysin an IBASIC program.

Parameter Name Range of Values Default

Type

svalues numeric Valid string characters None

* [IBASIC Program Must First Exist. If an IBASIC program does not exist
(as set with PROG:DEF), attempting to use PROG:STR generates an "lllegal
Program Name" error.

» Using <varname>. The variable specified in <varname> must be an
existing variable in the IBASIC program or a"lllegal Variable Name" error
will be generated. <varname> can be either character data or string data.

» Using <svalues>. <svalues> isalist of comma-separated strings used to set
<varname>. If <varname> cannot hold all the specified <svalues>, a
"Parameter Not Allowed" error is generated.

* Related Commands: None

 *RST Condition: None.

Assign Contentsto String Variable

PROG:STR B, 'B = Result’
String assigned to variable B$ is’B = Result’

PROGram:STRing? <varname> returns the contents of the specified string
variablein the IBASIC program.

Related Commands; PROG:STR

Return Contents of Variable

PROG:STR B, 'B = Result’
Assign B = Result’ to variable B$.
PROG:STR?
Returns "B = Result" (double quotes are part of the return)

8-22 SCPI Command Reference

‘WAIT

Parameters

Comments

Example

"WAIT?

Comments

Example

‘WAIT

PROGram:WAIT causes the Agilent E1406 to wait until the current program isin
the STOPped or PAUSed state before executing the next command.

None

* Related Commands. None

 *RST Condition: None.

Set Program WAIT

PROG:WAIT

Commands to be executed do not execute until the current
IBASC programis STOPped or PAUSed.

PROGram:WAIT? has the same effect as the PROG:WAIT command, except
PROG:WAIT?returns avaue of 1 to indicate the IBASIC program is no longer
running.

* Related Commands. PROG:WAIT

Return WAIT Status

100 OUTPUT 70930;"PROG:WAIT?"

External computer waits until IBASC programis STOPped or
PAUSd

200 ENTER 70930;A
Returns 1 when IBAS C program is STOPped or PAUSed

SCPI Command Reference 8-23

‘WAIT?

SYSTem Subsystem The SYSTEM command subsystem for the IBASIC Instrument allows you to

Commands configure serial communications ports operations. The SY STem subsystem
commands table for the IBASIC instrument follows.
SYSTem Subsystem Commands for IBASIC
Keyword Parameter Form Description
SYSTem
:COMMunicate
:SERial[n]
:CONTrol ON|OFF|STANdard|IBFull
:DTR Sets mode for modem control line DTR
:DTR? ON|OFF|STANdard|IBFull Returns current mode of DTR line
‘RTS Sets mode for modem control line RTS
RTS? Returns current mode of RTS line
[:RECeive]
:BAUD <baud_rate>|MIN|MAX Set transmit/receive baud rate
:BAUD? [MIN[MAX] Returns current or allowable baud rate
BITS 7[8]MINIMAX Sets number of data bitsin data frame
BITS? [MIN[MAX] Returns number of bitsin data frame
:PACE
[:PROTocol] XON|NONE Sets receive pacing protocol state
[:PROTocol]? Returns receive pacing protocol state
:THReshold
:STARt <char_count> Setsinput buffer level at which XON sent
:STARt? [MIN[MAX] Returns current or allowable STARt level
:STOP <char_count> Sets input buffer level to send XOFF
:STOP? [MIN[MAX] Returns current or allowable STOP level
:PARity
:CHECK 1|0|ON|OFF Enables/disables receive parity checks
:CHECK? Returns receive parity check state
[:TYPE] EVEN|ODD|ZERO|ONE|NONE Setstype of receive/transmit parity
[:TYPE?] Returns current parity type setting
:SBITs 12IMINIMAX Sets receive/transmit #stop bits
:SBITS? [MIN[MAX] Returns #stop bits set
:TRANsmit
:AUTO 1|0|ON|OFF Links/unlinks pacing protocol
:AUTO? Returns current pacing linkage
:PACE
[:PROTocol] XON|NONE Sets transmit pacing protocol
[:PROTocol]? Returns pacing protocol state
:ERRor? Returns oldest error message

8-24 SCPI Command Reference

:COMMunicate

:COMMunicate The SYStem:COM Municate: SERial[n]:... commands set and/or modify the
:SERial[n]: configuration of the serial interface(s) that are assigned to the IBASIC instrument.
Theinterface affected by the command is specified by anumber (zero through
seven) which replaces the [n] in the : SERial[n] command.

Comments .

Assigning Portsto IBASIC. Assign the built-in RS-232 port to IBASIC
with DIAG:COMM:SER[:OWNER] IBASIC sent to the System instrument.
Assign the RS-232/422 ports on an Agilent E1324A plug-in moduleto
IBASIC by setting the Logical Address (LADDR) switches on the modules
to 241, 242, ...,247.

Assigning a number to [n]. Thennumber zero specifiesthe built-in RS-232
interface while one through seven specify an Agilent E1324A plug-in
module number. For example, Agilent E1324A module#lisat logica
address 241 (when assigned to IBASIC), etc.

Card NumbersMust be Contiguous. The Agilent E1324A module
installed at address 241 becomes card #1, the card at address 242 becomes
card #2, etc. Thelogica addressesfor the Agilent E1324A modules must
start at 241 (to be assigned to IBASIC) and must be contiguous (ho unused
logical addresses).

Serial Communication Command Storage. Serial communications
commands take effect after the end of the program message containing the
command. Serial communication settings for the built-in RS-232 interface
are stored in non-volatile RAM and used at power-up and
DIAG:BOOT[:WARM].

Serial communication settings for the Agilent E1324A Datacomm interface
are stored in its on-board non-volatile EEROM only &fter the
DIAG:COMM:SER[N]:STORe command is executed.

Serial Communication Parameter Defaults. DIAG:BOOT:COLD setsthe
seria communication parameters to the following defaults: BAUD 9600,
BITS 8, PARity NONE, SBITs 1, DTR ON, RTS ON, PACE XON.

Example Setting Baud Ratefor Agilent E1324A Module Port

SYST:COMM:SER2:BAUD 9600

Sets baud rate 9600 for Agilent E1324A module #2 (must also
have module #1)

SCPI Command Reference 8-25

:COMMunicate

:COMMunicate
:SERial[n]
:CONTrol:DTR

Parameters

Comments

Example

:COMMunicate
:SERial[n]
:CONTrol:DTR?

Example

SYSTem:COMMunicate: SERial[n]:CONTrol:DTR <dtr_cntrl> controls the
behavior of the Data Terminal Ready output line. DTR can be set to a static state
(ON|OFF), can operate as amodem control line (STANDard), or can be used asa
hardware handshake line (IBFull).

Name

Description

Range

Default

bytes

Sets size of memory
IBASIC will request.

1024 - 65536 bytes

8192 bytes

e <dtr_cntl> Parameter Definitions. The selected DTR control setting isin
effect after the end of the program message containing the DTR command.
The following table defines each value of dtr_cntrl:

Value Definition
ON DTR lineis asserted
OFF DTRLineis unasserted
STANdard DTR will be asserted when the serial interface is ready to send output data. Data
will be sent as soon as the connected device asserts DSR (data set ready).
IBFull While the input buffer is not yet at the :STOP level, DTR is asserted. Whenthe

input buffer reaches the :STOP level, DTR will be unasserted.

* Werecommend you set ...DTR and ...RTS to STANdard when operating a

modem.

* DIAG:BOOT:COLD will set...DTR to ON

* Related Commands: SY ST:COMM:SER[N]:CONT:RTS,

SYST:COMM:SER[N]:PACE:THR:STAR,
SYST:COMM:SER[n]:PACE:THR:STOP

*RST Condition: No change

Assertingthe DTR Line

SYST:COMM:SER1:CONT:DTR ON

Setsthe serial interface on Agilent E1324A moduleto assert the
DTRIine

SY STem:COMMunicate: SERial[n]: CONTrol:DTR? returns the current setting
for DTR line control.

Query DTR Control Setting

SYST:COMM:SER1:CONT:DTR?
Query DTR Control setting for serial interface on Agilent

E1324A module #1
ENTER statement
Returns "ON", "OFF", "STAN", or "IBF"

8-26 SCPI Command Reference

:COMMunicate
:SERial[n]
:CONTrol:RTS

Parameters

Comments

Example

:COMMunicate
:SERial[n]
:CONTrol:RTS?

Example

:COMMunicate

SYSTem:COMMunicate: SERial[n]:CONTrol:RTS <rts_cntrl> controlsthe
behavior of the Request To Send (RTS) output line. RTS can be set to a static state
(ON | OFF), can operate as a modem control line (STANdard), or can beused asa
hardware handshake line (IBFull).

Name Description Range Default

bytes Sets size of memory 1024 - 65536 bytes 8192 bytes
IBASIC will request.

* <rts _cntl> Parameter Definitions. The selected RTS control setting isin
effect after the end of the program message containing the RTS
command.The following table defines each value of rts_cntrl:

Value Definition
ON RTSlineis asserted
OFF RTSlineis unasserted

STANdard RTSwill be asserted when the serial interface is able to send output data. Data
will be sent if the connected device asserts CTS (clear to send).

IBFull While the input buffer is not yet at the :STOP threshold, RTS is asserted.
When the input buffer reaches the :STOP threshold, RTS is unasserted.

* Werecommend you set ...DTR and ...RTS to STANdard when operating a
modem.

* DIAG:BOOT:COLD will set...RTSto ON

* Related Commands: SY ST:COMM:SER[N]:CONT:DTR,
SYST:COMM:SER[n]:PACE:-THR:STARY,
SYST:COMM:SER[n]:PACE:THR:STOP

* Related Commands: SYST:COMM:SER[n]:CONT:DTR

*RST Condition: No change

Unassertingthe RTS Line

SYST:COMM:SER1:CONT:RTS OFF

Unasserts the RTSline for the serial interface on Agilent E1324A
modul e #1

SYSTem:COMMunicate: SERial[n]: CONTrol:RTS? returns the current setting
for RTSline control.

Query RTSControl Line Setting

SYST:COMM:SER1:CONT:RTS?

Query RTScontrol line setting for serial interface on Agilent
E1324A module #1

ENTER statement
Returns "ON", "OFF", "STAN", or "IBF"

SCPI Command Reference 8-27

:COMMunicate :SERial[n] [:RECeive]:BAUD

:COMMunicate SYSTem:COMMunicate: SERial[n][:RECeive]:BAUD <baud> setsthe baud
:SERial[n] ratefor thebuilt-in RS-232 seria port or for the RS-232/422 ports on an Agilent

[: RECelve] ‘BAUD E1324A p| ug-in module.

Parameters Name Description Range Default

bytes Sets size of memory 1024 - 65536 bytes 8192 bytes
IBASIC will request.

Comments » Attempting to set baud _rate to other than the values shown in the above
table generates error -222.

* Baud Rates. DIAG:BOOT:COLD sets default baud rate of 9600. MIN sets
baud rate of 300, MAX sets baud rate of 19200.

» *RST condition: No change.

Example Setting Baud Rateto 1200

SYST:COMM:SER1:BAUD 1200
Set baud rate of 1200 bps for Agilent E1324A plug-in module #1

:COMMunicate SYSTem:COMMunicate: SERial[n][:RECeive]:BAUD? [MIN | MAX] returns
:SERial[n] thecurrent baud rate setting if no parameter is sent, returns the maximum allowable
[:RECeive]:BAUD? setting if MAX is sent, or returns the minimum allowable setting if MIN is sent.

Example Query Current Baud Rate

SYST:.COMM:SER1:BAUD?

Query baud rate for Agilent E1324A module #1
ENTER statement

Returns baud rate

8-28 SCPI Command Reference

:COMMunicate
:SERial[n]
[:RECeive]:BITS

Parameters

Comments

Example

:COMMunicate
:SERial[n]
[:RECeive]:BITS?

Example

:COMMunicate

SYSTem:COMMunicate: SERial[n][:RECeive]:BI TS <bits> sets the number of

bits to be used to transmit and receive data

Name

Description

Range

Default

bytes

Sets size of memory
IBASIC will request.

1024 - 65536 bytes

8192 bytes

* MIN|MAX Settings. MIN sets 7 stop bitsand MAX sets 8 hits.
Attempting to set bits to other than values shown generates error -222.

» Disallowed Bit Combinations. Although the...BITS command operates
independently of the PARity[:TYPE] and the...SBIT (stop bits) command,
two combinations of the ...BITS command are disallowed because of their
dataframe bit width. The following table shows the possible combinations:

BITS

PARity[:TYPE]

SBITs

Frame Bits

7

NONE

1

9 - disallowed

NONE

10

Yes

10

Yes

11

NONE

10

NONE

11

0 0|0 NN

Yes

RPINIFPINRFEPIN

11

8

Yes

2

12 - disallowed

o Default Data Width. DIAG:BOOT:COLD setsthe default data width of 8

bits.

* Related Commands: SYST:COMM:SER[n]:PAR,
SYST:COMM:SER[N]:SBIT

» *RST Condition: No change

Setting Data Width to 7 Bbits

SYST:COMM:SER1:BITS 7
Set data with to 7 bitsfor Agilent E1324A plug-in module #1

SYSTem:COMMunicate: SERial[n][:RECeive]:BITS? [MIN | MAX] returns
the current datawidth if no parameter is sent, the maximum allowable setting if
MAX is sent, or the minimum allowable setting if MIN is sent.

Query Current Data Width

SYST:COMM:SER1:BITS?
Query data width setting for Agilent E1324A plug-in module #1
ENTER statement
Returns 7 or 8

SCPI Command Reference 8-29

:COMMunicate

:COMMunicate
:SERial[n]
[:RECeive]:PACE
[:PROTocol]
Parameters

Comments

Example

:COMMunicate
:SERial[n]
[:RECeive]:PACE
[:PROTocol]?

Example

SYSTem:COMMunicate: SERial[n][:RECeive]:PACE[:PROT ocol] <protocol>
enables or disables receive pacing (XON/XOFF) protocol.

Name Description Range Default

bytes Sets size of memory 1024 - 65536 bytes 8192 bytes

IBASIC will request.

» Using XON/XOFF thresholds. While ...PROT is XON, the seria interface
will send XOFF when the buffer reachesthe ...STOP threshold, and XON
when the buffer reaches the ...STARt threshol d.

* XON/XOFF Control Characters. The XON character is control Q (ASCII
1710, 1116). The XOFF character is control S (ASCII 1910, 1316).

* DIAG:BOOT:COLD sets...PACE to XON.

* Related Commands: ...[PROT]:THR:STAR,
...[PROT]:THR:STOP

» *RST Condition: No change

Enable XON/XOFF Handshaking

SYST:COMM:SER1:PACE:PROT XON

Enable XON/XOFF handshake for Agilent E1324A plug-in
modul e #1

SYSTem:COMMunicate: SERial[n][:RECeive]:PACE[:PROTocol]? returns the
current receive pacing protocol.

Query XON/XOFF Protocol

SYST:COMM:SER1:PACE:PROT?

Querries Agilent E1324A plug-in module #1 to see if XON/XOFF
protocol is enabled

ENTER statement
Returns "XON" if enabled or "NONE" if disabled

8-30 SCPI Command Reference

:COMMunicate
:SERial[n]
[:RECeive]:PACE
:THReshold:STARt
Parameters

Comments

Example

:COMMunicate

SYSTem:COMMunicate: SERial[n][:RECeive]:PACE: THReshold

:STARLt <char_count> configures the input buffer at which the specified interface
may send the XON character (ASCII 1116), assert the DTR line, and/or assert the

RTSline.
Parameter Name Type Range of Values Default
char_count numeric | 1through 99 for built-in RS-232 None
1 through 8192 for Agilent
E1324A

Determining I nput Buffer Size. To determine theinput buffer sizefor the
serid interfaceyou are using, send
SYST:COMM:SER[N]:PACE:THR:STAR? MAX. Thereturned valueisthe
buffer size.

PACE:PROT XON Must be Set. ...THR:STAR has no effect unless
...PACE:PROT XON, ...CONT:DTR IBFull, or ..CONT:DTR IBFull has
been sent.

...STARt/STOP Default Value. The default STARt and STOP thresholds
for the built-in and plug-ins are:

STARt STOP
Built-in RS-232 10 65
Plug-in Modules 2048 6144

...STARt must be set to lessthan ...STOP.

Related Commands: ...PACE:PROT XON|NONE, ...CONT:DTR,
..CONT:RTS

*RST Condition: No change

Set Interfaceto Generate XON

SYST:COMM:SER1:PACE:THR:STAR 10

Set interface on Agilent E1324A to send XON when input buffer
contains 10 characters.

SCPI Command Reference 8-31

:COMMunicate

:COMMunicate
:SERial[n]
[:RECeive]:PACE
:THReshold:STARt?
Comments

Example

:COMMunicate
:SERial[n]
[:RECeive]:PACE
:THReshold:STOP

Parameters

Comments

SYSTem:COMMunicate: SERial[n][:RECeive]:PACE: THReshold

:STARt? [MIN | MAX] returns the current start threshold if no parameter is sent,
the maximum allowabl e setting if MAX is sent, or the minimum allowable setting if
MIN is sent.

» Determining I nput Buffer Size. To determine the size of the input buffer
for the serid interface you are using, send
SYST:COMM:SER[N][:REC]:PACE:THR:STAR? MAX. The returned
valueisthe buffer size.

Query Current STARt Threshold

SYST:COMM:SER1:PACE:THR:STAR?

Query start threshold value for serial interface on Agilent
E1324A module #1

ENTER statement
Return threshold value

SYSTem:COMMunicate: SERial[n][:RECeive]: PACE: THReshold: STOP
<char_count> configuresthe input buffer level at which the specified interface may
send the XOFF character (ASCII 1316), deassert the DTR line, and/or deassert the
RTSline.

Parameter Name Range of Values Default

Type

char_count numeric | 1through 99 for built-in RS-232 None

1 through 8192 for Agilent

E1324A

» Determining I nput Buffer Size. To determine the size of the input buffer of
the seria interface you are using, send
SYST:COMM:SER[N]:PACE:THR:STOP? MAX. The returned vdueisthe
buffer size.

« PACE:PROT XON Must be Set. ...THR:STOP has no effect unless
...PACE:PROT XON, ...CONT:DTR IBFull, or ..CONT:DTR IBFull has
been sent.

* STARt/STOP Default Value. The default STARt and STOP thresholds for
the built-in and plug-ins are:

STARt STOP
Built-in RS-232 10 65
Plug-in Modules 2048 6144

e ..STOP must be set to greater than ...STARL.

* Related Commands: ...PACE:PROT XON|NONE, ...CONT:DTR,
..CONT:RTS

8-32 SCPI Command Reference

Example

:COMMunicate
:SERial[n]
[:RECeive]:PACE
:THReshold:STOP?
Comments

Example

:COMMunicate
:SERial[n]
[:RECeive]
:PARIity:CHECk
Parameters

Comments

Example

:COMMunicate
» *RST Condition: No change

SYST:COMM:SER1:PACE:THR:STOP 80

St serial interface on Agilent E1324A module #1 to send XOFF
when input buffer contains 80 characters.

SYSTem:COMMunicate: SERial[n][:RECeive]: PACE: THReshold:

STOP? [MIN | MAX] returns the current stop threshold if no parameter is sent,
the maximum allowabl e setting if MAX is sent, or the minimum allowabl e setting
if MIN is sent.

» Determining Size of I nput Buffer. To determine the size of the input buffer
of the serial interface you areusing, send
SYST:COMM:SER[N]:PACE:THR:STOP? MAX. The returned value will
be the buffer size.

Query Current Stop Threshold

SYST:COMM:SER1:PACE:THR:STOP?

Query STOP threshold for serial interface on Agilent E1324A
module #1

ENTER statement
Returns numeric value

SYSTem:COMMunicate: SERial[n][:RECeive]: PARIity: CHECk <check_cntrl>
controls whether or not the parity bit in received serial dataframes will be
considered significant.

Parameter Name Range of Values Default

Type

check _cntrl boolean 1|0|ON | OFF None

» Parity Check Off. When check_cntrl isset to O or OFF, received datais
not checked for correct parity. Transmitted data still includes the type of
parity asset with ...PARity[:TYPE].

* Related Commands: SY ST:COMM:SER[n]:PAR[:TY Pg]

» *RST Condition: No change

Set Parity Check ON

SYST:COMM:SER1:PAR:CHEC ON

Set parity check to ON for serial interface on Agilent E1324A
modul e #1

SCPI Command Reference 8-33

:COMMunicate

:COMMunicate
:SERial[n]
[:RECeive]
:PARIity:CHECK?

Example

:COMMunicate
:SERial[n]
[:RECeive]
:PARIity[: TYPE]
Parameters

Comments

SYSTem:COMMunicate: SERial[n][:RECeive]: PARIity: CHECkK? returns the
state (ON/OFF) of parity checking.

Check Parity Status

SYST:COMM:SER1:PAR:CHEC?

Query parity check status (ON/OFF) for serial interface on
Agilent E1324A module #1

ENTER statement

Returns

1if ON, Oif OFF

SYSTem:COMMunicate: SERial[n][:RECeive]: PARIty[: TYPE] <type>
configures the type of parity to be checked for received data, and generated for

transmitted data.
Parameter Name Type Range of Values Default
type discrete EVEN | ODD | ZERO | ONE | None

NONE

» PARIty[: TYPE] Values: Thefollowing table defines each value of type:
Attempting to set type to other than values shown generates error -222.

Value | Definition

EVEN | If ...PARIity:CHECK is ON, the received parity bit must
maintain even parity. The transmitted parity bit will maintain
even parity.

ODD If ...PARity:CHECK is ON, the received parity bit must
maintain odd parity. The transmitted parity bit will maintain
odd parity.

ZERO | If ...PARity:CHECK is ON, the received parity bit must be a
zero. Thetransmitted parity bit will be azero.

ONE If ...PARity:CHECK is ON, the received parity bit must be a
logic one. The transmitted parity bit will be alogic one.

NONE | A parity bit must not be received in the serial dataframe. No
parity bit will be transmitted.

8-34 SCPI Command Reference

Example

:COMMunicate
:SERial[n]
[:RECeive]
‘PARIty[: TYPE]?

Example

:COMMunicate

» Disallowed Combinations. Although the ...PARIty[: TYPE] command
operates independently of the...BITSor ...SBITs commands, two
combinations are disallowed because of their data frame bit width (seethe
following table):

BITS PARIty[: TYPE] SBITs Frame Bits
7 NONE 1 9 - disdlowed
NONE 10
Yes 10
Yes 11
NONE 10
NONE 1u
Yes 11
Yes 12 - disalowed

0|00 |00 |00 | NN |N
NFRLINEFELINEFEIN

* ..PAR:CHECK ON Must be Set. Received parity will not be checked
unless SY ST:COMM:SER[n]:PAR:CHEC ON has been sent. Transmitted
datawill include the specified parity whether ...PAR:CHEC is ON or OFF.

* DIAG:BOOT:COLD sets PARity to NONE.

« Related Commands: ...PAR:CHEC 1J0JON|OFF, ,...SER[N]:BITS 78,
...SER[N]:SBIT 1|2

» *RST Condition: No change

Set Parity Check/Generation ODD.

SYST:COMM:SER1:PAR ODD

Set ODD parity for serial interface on Agilent E1324A module #1
SYST:COMM:SERO:PAR:CHEC ON

Enable parity check/gen.

SY STem:COM Municate: SERial[n][: RECeve]: PARIty[: TYPE]? returns the
type of parity checked and generated.

Query Typeof Parity Checking Set

SYST:COMM:SER1:PAR?
Query parity type for serial interface on Agilent E1324A module
#1

ENTER statement
Returns EVEN, ODD, ZERO, ONE, or NONE

SCPI Command Reference 8-35

:COMMunicate

:COMMunicate
:SERial[n]
[:RECeive]:SBITs
Parameters

Comments

Example

:COMMunicate
:SERial[n]
[:RECeive]:SBITs?

Example

SYSTem:COMMunicate: SERial[n][:RECeive]: SBI Ts <shits> sets the number
of stop bitsto be used to transmit and receive data.

Parameter Name Type Range of Values Default

shits numeric 1]2|MIN|MAX None

» Attempting to set shits to other than the values in the abovetable generates
error -222.

» Disallowed Combinations. Although the...SBITs command operates
independently of the ...BITS or ...PARity[:TY PE] commands, two
combinations are disallowed because of their data frame bit width. The
following table shows the possible combinations:

BITS PARIty[: TYPE] SBITs Frame Bits
7 NONE 1 9- disalowed
7 NONE 2 10
7 Yes 1 107
8 NONE 1 10
8 NONE 2 1
8 Yes 1 1u
8 Yes 2 12 - disalowed

* DIAG:BOOT:COLD sets SBITsto 1.
* Related Commands: SY ST:COMM:SER[n]:BAUD
* *RST Condition: No change

Setting 2 Stop Bits

SYST:COMM:SER1:SBITS 2
Sets 2 stop hits for serial interface on Agilent E1324A module #1

SYSTem:COMMunicate: SERial[n][:RECeive]: SBITs? [MIN | MAX] returns
the current stop bit setting if no parameter is sent, the maximum allowable setting if
MAX issent, or the minimum alowable setting if MIN is sent.

Query Current Stop Bit Setting

SYST:COMM:SER1:SBIT?

Query number of stop bitsfor serial interface for Agilent E1324A
module #1 (:REC isimplied)

ENTER statement
Returns1or 2

8-36 SCPI Command Reference

:COMMunicate
:SERial[n]
:TRANsmit:AUTO

Parameters

Comments

Example

:COMMunicate
:SERial[n]
:TRANsmit:AUTO?

Comments

Example

:COMMunicate
:SERial[n]
:TRANsmit:PACE
[:PROTocol]

Parameters

Comments

:COMMunicate

SYSTem:COMMunicate: SERial[n]: TRANsmit: AUTO <auto_cntr|> when ON
sets the transmit pacing mode to be the same as that set for receive pacing. When
OFF, the transmit pacing mode may be set independently of the receive pacing
mode.

Parameter Name Range of Values Default

Type

boolean None

auto_cntrl 0|1|OFF|ON

* AUTO AlwaysON for Agilent E1324A. AUTO isaways ON for an
Agilent E1324A. Trying to set OFF or O will generate an error.

* DIAG:BOOT:COLD sets...AUTO to ON.

* Related Commands: SY ST:COMM:SER[n]:REC:PACE:PROT,
SYST:COMM:SER[N]: TRAN:PACE:PROT

* *RST Condition: TRAN:AUTO ON

Link Transmit Pacing With Receive Pacing

SYST:COMM:SERO:TRAN:AUTO ON
Link transmit/receive pacing for built-in RS-232 interface.

SYSTem:COMMunicate: SERial[n]: TRANsmit: AUT O? returns the current state
of receiveto transmit pacing linkage.

* AUTO AlwaysON for Agilent E1324A. AUTO isaways ON for an
Agilent E1324A. Inthiscasg, ... AUTO? awaysreturnsa 1.

Query Receiveto Transmit Linkage

SYST:COMM:SERO:TRAN:AUTO?

Query receiveto transmit linkage for built-in RS-232 interface
ENTER statement

Returns 1 for AUTO ON, 0 for AUTO OFF

SY STem:COM Municate: SERial[n]: TRANsmit: PACE[:PROT ocol] <protocol>
enables or disables the transmit pacing (X ON/XOFF) protocol (built-in RS-232
interface only).

Parameter Name Range of Values Default

Type

protocol discrete XON|NONE None

» XOFF HaltsData Transmission. Receipt of an XOFF character (ASCII
1910, 1316) will hold off transmission of data until an XON character (ASCI|
1710, 1116) isreceived.

SCPI Command Reference 8-37

:COMMunicate
 DIAG:BOOT:COLD sets...PACE to XON.

* Related Commands: SY ST:COMM:SER[N]:TRAN:AUTO

» *RST Condition: No change

Example Set XON/XOFF Transmit Pacing

SYST:COMM:SERO:TRAN:PACE:PROT XON
Set XON/XOFF transmit pacing for built-in RS-232 interface

:COMMunicate SYSTem:COMMunicate: SERial[n]: TRANsmit:PACE[:PROTocol]? returns
:SERial[n] thecurrent transmit pacing protocol.
:TRANsmit:PACE
[:PROTocol]?

Example Check Transmit Pacing Protocol

SYST:COMM:SERO: TRAN:PACE:PROT?

Query transmit pacing protocol state for built-in RS-232 interface
ENTER statement

Returns"XON" or "NONE"

SYSTem:ERRor? SySTem:ERRor? returns the oldest entry in the IBASIC instrument’s error/event
gueue. The return contains an error number in range [-32768, 32767] and an error
message. 0, "No error” is returned when the queue is empty (no errors).

Comments * Event/Error Queue Operation. Theerror queue is firgt-in, first-out. If
the queue overflows, the last error/event in the queueis replaced with error
-350, "Queue overflow".

» Clearing Event/Error Queue. The event/error queueis cleared on
power-up, when a*CLS command is received, or when the last error itemis
read from the queue.

8-38 SCPI Command Reference

Chapter 9 Contents

Using this Chapter 9-1

Common Command Groups 9-1

Test/Identity Commands 9-2

Synchronization commands 9-3

Status and Event Commands9-3

Macro Commands 9-6

Chapter 9

Common Command Reference

Using this Chapter

This chapter describesthe IEEE 488.2 Common (*) Commands which apply to the
IBASIC Instrument. Seethe Tutorial Description of the General Purpose Interface
Bus for additional information on | EEE 488.2 Common Commands.

Common
Command Groups

The following table shows the Common Commands implemented by the IBASIC
Instrument by Command Group. In this chapter, Common Commands are
described a phabetically by Command Group.

The examplesin this chapter assume the Common commands are issued by an
external computer and that Talk/Listen mode is set.

Common (*) Commands for the IBASIC Instrument

Group Mnemonic Description
Test/Identity *|DN? | dentification Query
Commands *RST Reset

*TST? Self-Test Query
Synchronization *OPC Operation Complete
Commands *OPC? Operation Complete Query
*WAI Wait to Continue
Status and Event *CLS Clear Status
Commands *ESE Standard Event Enable
*ESE? Standard Event Enable Query
*ESR? Standard Event Query
*SRE Service Request Enable
*SRE? Service Request Enable Query
*STB? Read Status Byte Query
Macro Commands *DMC Define Macro
*EMC Enable Macro
*EMC? Enable Macro Query
*GMC? Get Macro Contents Query
*LMC? Learn Macro Query
*PMC Purge Macros

Common Command Reference 9-1

Test/Identity
Commands

*IDN?

Comments

Example

*RST

Comments

Example

*TST?

The Test/Identity commandsinclude*IDN?, *RST, and * TST?.

I dentification query. Returns the identity of the IBASIC instrument.

The response from *IDN? consists of the following four fields (fiel ds are separated
by commas):

* Manufacturer

* Mode number

» Seria number (returns O if not available)

* Firmwarerevision (returns O if not available)

5 IRE-SAVE "IDNQUERY"

10 DIM A$[50] Dimension array for 1D fields
20 OUTPUT 70930;"*IDN?" Queriesidentity of IBASC
instrument
30 ENTER 70930;A% Places ID fiddsin array
40 PRINT A$ PrintsID fields
50 END
A typical IBASIC instrument responseis: Hewlett-Packard,IBASIC,0,A.03.00

Reset. Causesthe IBASIC Instrument to perform aBASIC Reset.

*RST resets the IBASIC instrument as follows:

» Stopsarunning program (sets IBASIC to idle state), but does not delete the
program

* Resets variables (variables will then be out of context)

* Resetsal interfaces assigned to IBASIC (interna IBASIC, GPIB, or Serid)

» Clearsthe selected display and exits EDIT mode

*RST does not affect:

* Theinstrument address

» The output queue

» The Service Request Enable Register
* The Standard Event Enable Register
* Protected user data

OUTPUT 70930;"*RST"
Resets the IBAS C Instrument

Self-test query. Always returnsa0; no IBASIC self-test is performed.

9-2 Common Command Reference

Synchronization

commands

The synchronization commands include * OPC, * OPC?, and *WAI. These
commands can be used by IBASIC to ensure synchronization between an
instrument and the IBASIC computer or between multiple instruments. These
commands are not meant to be used on the IBASIC Instrument itsalf since the
Operation Complete event or Wait Event occurs when the IBASIC parser has
parsed a command--not when that command has finished being executed. Refer to
Synchronizing Instrument/Device Operations in Chapter 5 or to the Agilent E1406
User's Manual for information on how these commands can be used with
instruments other than the IBASIC Instrument.

Status and Event

Commands

*CLS

Comments

Example

Status and event commands can be used to determine the status of the IBASIC
Instrument. For an SCPI instrument, the Status system consists of a Questionable
Data/Signal Status Register, an Operation Status Register, a Standard Event Status
Group, and a Status Byte Register.

However, the IBASIC instrument uses the Standard Event Status Group, the Status
Byte Register, and bit 14 (program running) of the Operation Status Register. For
the IBASIC Instrument, the Questionable Data/Signal Status Register always
returns O.

The Standard Event Status Group consists of two registers (Standard Event and
Standard Event Enable) and is set by the * ESE and * ESR? commands. *ESE? can
be used to query the state of the Standard Event Enable Register.

The Status Byte Register is set/cleared by the * SRE and * STB? commands. * SRE?
can be used to query the state of the Service Request Enable on the Status Byte
Register. Note that bits 0 through 3 and bit 7 of the Status Byte Register are always
0. The Status Byte summary hit is bit 6 (RQS) on the Status Byte Register.

Clear status command. The* CLS command clears the Standard Event Status
Group registers, the Status Byte register, and the error queue for the IBASIC
instrument.

CLSalso clears bits 4, 5, and 7 of the Status Byte register (STB? must be sent to
clear hit 6.)

*CL S does not affect enabling bits in the Status Byte register or the Standard Event
Status Group registers. However, * CLS disables the operation complete function
(* OPC command) and the operation complete query function (* OPC? command).

OUTPUT 70930;"*CLS"

Clearsthe Standard Event Satus Group registers, Status Byte
register and the error queue for the IBAS C instrument.

Common Command Reference 9-3

*ESE <mask>

Comments

Example

*ESE?

Example

*ESR?

Comments

Example

*SRE <mask>

Comments

Standard Event Enable. Enablesone or more eventsin the Standard Event
Enable Register to be reported in bit 5 (Standard Event summary bit) of the Status
Byte Register.

An event is enabled by specifying the appropriate decima weight for * ESE
<mask>. To enable more than one event, specify the sum of the decimal weights.

OUTPUT 70930;"*ESE 48"

Enables bits4 and 5 of the Standard Event Enable Register for
the IBASI C Instrument. Respective decimal weightsare 16 + 32
= 48.

Standard event enable query. Returns the weighted sum of all enabled bitsin the
Standard Event Enabl e register.

5 IRE-SAVE "ESEQUERY"

10 OUTPUT 70930;"*ESE?" Sends standard event enable
query

20 ENTER 70930;A Placesresponsein variable

30 PRINT A Displays response

40 END

Standard Event Query. Returns the weighted sum of all set bitsin the Standard
Event Register.

After reading the Standard Event Register, *ESR? clearsthe register. The events
recorded in the Standard Event Register are independent of whether or not those
events are enabled with the * ESE command.

5 IRE-SAVE "ESRQUERY"

10 OUTPUT 70930;"*ESR?" Query Standard Event Register
State

20 ENTER 70930;A Placeresponsein A

30 PRINT A Displays response

40 END

Service Request Enable. * SRE identifies which Service Request events will
generate a Service Request (SRQ).

When a Service Request event occurs, the event sets a corresponding bit in the
Status Byte Register, whether or not the event has been enabled by * SRE. However,
when an event enabled by * SRE occurs, the event sets a bit in the Status Byte
Register and issues an SRQ to the computer.

9-4 Common Command Reference

Example

*SRE?

Example

*STB?

Comments

Example

An event is enabled to generate an SRQ by specifying its decima weight in the
*SRE <mask> parameter. To enable more than one event, specify the sum of the
decimal weights for the events.

10 OUTPUT 70930;"*ESE 16"

Enables Execution Error bit (bit 4) of the Sandard Event Enable
Register.
20 OUTPUT 70930;"*SRE 32"

Enables bit 5 of the IBAS C Instrument’s Status Byte Register.
Thiswill generate an SRQ whenever an Execution Error occurs.

Servicerequest enable query. Returnsthe weighted sum of al enabled events
(those enabled to generate SRQ) in the Status Byte register of the IBASIC
instrument.

5 IRE-SAVE "SREQUERY"

10 OUTPUT 70930;"*SRE?" Query service request enable
20 ENTER 70930;A Places responsein variable
30 PRINT A Displays response

40 END

If bits4 and 5 are enabled to generate an SRQ, thereturnis 48 (16 for bit 4 + 32 for
bit 5).

Read StatusByte Query. Returnsthe weighted sum of all set bitsin the Status
Byte Register.

Y ou can read the state of the Status Byte Register using the * STB? command or the
Serial Poll (SPOLL) command. Both commands return the weighted sum of all set
bitsin the register. However, * STB? does not clear bit 6 (Service Reguest) of the
Status Byte Register, while SPOLL does clear bit 6 of the register.

No other Status Byte Register bits are cleared by either method except Message
Available (bit 4) which may be cleared as aresult of reading the response to * STB?.

5 IRE-SAVE "STBQUERY"

10 OUTPUT 70930;"*STB?" Query Status Byte Register
contents for the IBASIC
I nstrument
20 ENTER 70930;A Placesresponsein variable
30 PRINT A Displays response
40 END

Common Command Reference 9-5

Macro Commands The Macro commands (*DMC, *EMC, *EMC?, *GMC, *GMC?, *LMC, and
*PMC) can be used to define and use macros (a sequence of commands) to replace
aset of commands. Macros are particularly useful when using an external computer
with the mainframe in Talk/Listen mode. In this situation, macros can be used to
dramatically reduce the number of characterstransferred over the GPIB bus which
reduces bus overhead and maximizes transfer speed. An example follows the
macro command descriptions that shows most macro operations.

*DMC <label> Define Macro Command. Allows the user to assign a sequence of commandsto a
macro label.

Comments IBASIC executes the macro when it encounters the macro <label> as acommand.
To define amacro, send *DMC followed by a string designating the macro label.
Following the <label>, send an Arbitrary Block Program Data element defining the
macro. The macro <label> may be either acommand or a query.

The macro <labgl> cannot be the same as a Common Command or Common
Command Query, but it may be the same as a device-dependent command. If
macros are enabled, when amacro <label> isthe same as a device-dependent
command, the device executes the macro rather than the device command.

PROGram commands that download character strings and numeric data are not
supported inside macros. These unsupported commands are: PROG:STRING,
PROG:NUMB, and PROG:DEF. For example, the following statement is not
supported and will cause errors:

OUTPUT @IBASIC:"™*DMC ""M1™ #219 PROG:STRING A,’A=1"

*EMC <number> Enable Macro Command. Enables/disables macros for a device.

Comments Sending *EMC 0 disables all macros. Sending *EMC <number> in the range
-32767 to +32767 enables macros. Standard rounding rules for <number > apply.

Example *EMC 0.4
Disables all macros, since 0.4 roundsto O.
*EMC -12.4

Enables macros, since <number> isin range of -32767 to
+32767.

*EMC? Enable macro query. Allows user to determine if macros are enabled. The
*EMC? command returns 1 when macros are enabled or returns O when macros are
disabled.

9-6 Common Command Reference

*GMC? Get Macro Contents Query. Returns the current definition of amacro.

Comments Send *GMC?followed by the <label> string of a macro. The device responds with
a Definite Length Arbitrary Block Response Data element containing the macro
definition.

Example *GMC? "SWEEP_SET"
Returns the macro definition for the macro "SNVEEP_SET"

*LMC? Learn macroquery. Returnsthelabelsof al currently defined macros. The return
consists of strings separated by commas. The return is the same whether macros are
enabled or disabled.

*PMC PurgeMacros Command. Deletesall macrosin memory which were defined with
the* DMC command. All macro sequences and labels are removed from memory.

Macro Example 10 ! RE-SAVE "MAN1"

20 ASSIGN @IBASIC TO 70930.

30 CLEAR @IBASIC

40 OUTPUT @IBASIC;"*RST;*CLS;:prog:del:all"
IBASIC reset, clear status, delete current program

50 OUTPUT @IBASIC;"prog:def #0"
Download following program

60 OUTPUT @IBASIC;"10 LOOP"

70 OUTPUT @IBASIC;"20 DISP I"

80 OUTPUT @IBASIC;"25 I=I+1"

90 OUTPUT @IBASIC;"30 END LOOP"

100 OUTPUT @IBASIC;"40 END" END
END of downloaded program

110 OUTPUT @IBASIC;"*PMC"
Purge current macros

120 OUTPUT @IBASIC;"*DMC "'R"" #214prog:state run"
Macro R= RUN program

130 OUTPUT @IBASIC;"*DMC "'C"",#215prog:state cont"
Macro C = CONTinue program

140 OUTPUT @IBASIC;"*DMC "'P"" #215prog:state paus"
Macro P = PAUSE program

150 OUTPUT @IBASIC;"*DMC "'S™ #215prog:state stop"”
Macro S= STOP program

160 OUTPUT @IBASIC;*DMC "'BEEP" #216prog:exec 'BEEP™
Macro BEEP causes a beep

170 OUTPUT @IBASIC;"*DMC "'GET_I"",#212prog:numb? i"
Macro GET_1 will get value of | variable

Common Command Reference 9-7

9-8 Common Command Reference

180

190

200

210
220

230
240

250
260
270

280
290

300

OUTPUT @IBASIC;"*DMC "ERR"" #19syst:err?"
Macro ERR querieserror queue
OUTPUT @IBASIC;"*EMC 1"
Enable macros
OUTPUT @IBASIC;"R;ERR"
RUN program, check for errors
ENTER @IBASIC;In$
PRINT In$
Retrieve error (if any)
FOR I=1 TO 500
OUTPUT @IBASIC;"GET_I"
Get value of | fromrunning IBASC program
ENTER @IBASIC;|_
DISP I,I_
IF (I MOD 30)=0 THEN OUTPUT @IBASIC;"P;BEEP;C"
Every 30 counts pause, beep, continue
NEXT |
OUTPUT @IBASIC;"S"
STOP program
END

Appendix A Contents

Floating Point Math A-1

Timeout when Entering Data from a Device A-2

Enter from a Devicewith no Enter List does not Wait A-2

Format Off Enter to a String Does Not L ook for Length Word A-3

String Variable Entry A-3

Nested I/O A-4

Subprograms and ON Conditions A-4

Appendix A

IBASIC and HP Series 200/300 Differences

The IBASIC language is similar to that used on HP Series 200/300 BASIC
language computers. However, there are some differences. If you are familiar with
the Series 200/300 computers you will want to note the following IBASIC
differences.

Floating Point Math

Since various HP Series 200/300 BASIC and IBASIC platforms use dightly
different floating point and transcendental functions, it is never agood ideato rely
on exact equality of floating point results.

The following sample program gives an example of why:

10 A=1-COS(0)
20 PRINT A
30 END

IBASIC prints 1.11022302463E-16

HP Series 200/300 BASIC prints 0

IBASIC and Series 200/300 Differences A-1

Timeout when When IBASIC times-out waiting for input from adevice or gets an interface error,
Enterin g Data from an extra character is returned. The following example shows what happens for the

. timeout case:
a Device
5 IRE-SAVE "TIMEOUT"

10 ON TIMEOUT 9,1 GOTO Tmout ! serial card

20 OUTPUT 9 USING "#,K";"AB" ! Send a 2 character string with
Ino terminator.

30 ENTER9,A$ I Enter the string this will time out

40 GOTO No_tmout

50 Tmout:

60 PRINT LEN(A$) I'IBASIC prints 3

70 I HP Series 200/300 BASIC prints 2
80 No_tmout:

Q!..

100 END

The solution for IBASIC is to strip the extra character from the string if atimeout is
detected. Add thefollowing lineto do this:

65 A$=AS$[1LEN(A$)-1]

A similar fix can be used for the device error case.

Enter from a Device
with no Enter List

does not Wait 10 ! Enter from the keyboard with no ENTER list
20 ENTER 2 l!kHP Series 200/300 BASIC waits for the RETURN
I key
30 I' BASIC falls through without waiting
40 ..
50 ENTER 2,X$! Solution for IBASIC is to enter to
60 I A string but ignore the returned data.
70 I This operates the same in HP Series 200/300 BASIC
and IBASIC.

A-2 IBASIC and Series 200/300 Differences

Format Off Enter to
a String Does Not
Look for Length
Word

10 ASSIGN @F TO 9;FORMAT OFF
20 ENTER @FA$

HP Series 200/300 BASIC expects a4 byte length word to precede the string
characters. IBASIC does not look for alength word. It puts each character into the
string as it isreceived until an interface error, timeout or string overflow occur.
ENTERIing numbers operates the same as HP Series 200/300 BASIC.

String Variable
Entry

If an input statement is used to enter into a string variable which has been
dimensioned to length n, and the user enters a string that istoo long, an error is
generated and Ibasic remainsin input state, but the variableis set equal to first n
characters which were entered. HP Series 200/300 BASIC does not assign anything
to that variablein this case.

For example, during the input in the following program:

10 DIM A$[4]
20 INPUT A$
30 PRINT A$
40 END

If the user enters "abcdef", thiswill cause an error to be reported, and the input will
be executed again. If the user then entersareturn, on IBASIC A$ will be set to
"abed”, while on HP Series 200/300 BASIC it will be set to null string.

IBASIC and Series 200/300 Differences A-3

Nested I/O HP Series 200/300 BASIC permits nesting of 1/0 statements to as many levels as
there are different interface select codes. HP Series 200/300 BASIC would permit
the following:

10 PRINTER IS 701

20 PRINT FNNested

30 END

40 DEF FNNested

50 OUTPUT 822;"string"
60 RETURN O

70 FNEND

This program will not run in IBASIC as stated. To accommodate the same
functionality in IBASIC, the following can be done:

10 PRINTER IS 701

20 Result=FNNested

25 PRINT Result

30 END

40 DEF FNNested

50 OUTPUT 822;"string"

60 RETURN O

70 FNEND
Sub programs and In IBASIC, when using an ON condition (such as ON KEY) to call asubprogram,
ON Conditions you cannot use parameter listsin the SUB statement. If you do, you will generate

Error 9 Improper number of parameters. On HP Series 200/300 BASIC
computers, the error occurs when the program line containing the ON condition is
executed. InIBASIC, the error occurs when the ON condition occurs. For
example, this program generates Error 9 in IBASIC when key 1 is pressed:

10 ON KEY 1 CALL SUB A
20 GOTO 20

30 END

40 SUB A(B)

50 1...

60 !...

70 SUBEND

A-4 IBASIC and Series 200/300 Differences

